无服务器数据处理框架的评估

Sebastian Werner, Richard Girke, Jörn Kuhlenkamp
{"title":"无服务器数据处理框架的评估","authors":"Sebastian Werner, Richard Girke, Jörn Kuhlenkamp","doi":"10.1145/3429880.3430095","DOIUrl":null,"url":null,"abstract":"Serverless computing is a promising cloud execution model that significantly simplifies cloud users' operational concerns by offering features such as auto-scaling and a pay-as-you-go cost model. Consequently, serverless systems promise to provide an excellent fit for ad-hoc data processing. Unsurprisingly, numerous serverless systems/frameworks for data processing emerged recently from research and industry. However, systems researchers, decision-makers, and data analysts are unaware of how these serverless systems compare to each other. In this paper, we identify existing serverless frameworks for data processing. We present a qualitative assessment of different system architectures and an experiment-driven quantitative comparison, including performance, cost, and usability using the TPC-H benchmark. Our results show that the three publicly available serverless data processing frameworks outperform a comparatively sized Apache Spark cluster in terms of performance and cost for ad-hoc queries on cold data.","PeriodicalId":224350,"journal":{"name":"Proceedings of the 2020 Sixth International Workshop on Serverless Computing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Evaluation of Serverless Data Processing Frameworks\",\"authors\":\"Sebastian Werner, Richard Girke, Jörn Kuhlenkamp\",\"doi\":\"10.1145/3429880.3430095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Serverless computing is a promising cloud execution model that significantly simplifies cloud users' operational concerns by offering features such as auto-scaling and a pay-as-you-go cost model. Consequently, serverless systems promise to provide an excellent fit for ad-hoc data processing. Unsurprisingly, numerous serverless systems/frameworks for data processing emerged recently from research and industry. However, systems researchers, decision-makers, and data analysts are unaware of how these serverless systems compare to each other. In this paper, we identify existing serverless frameworks for data processing. We present a qualitative assessment of different system architectures and an experiment-driven quantitative comparison, including performance, cost, and usability using the TPC-H benchmark. Our results show that the three publicly available serverless data processing frameworks outperform a comparatively sized Apache Spark cluster in terms of performance and cost for ad-hoc queries on cold data.\",\"PeriodicalId\":224350,\"journal\":{\"name\":\"Proceedings of the 2020 Sixth International Workshop on Serverless Computing\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 Sixth International Workshop on Serverless Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3429880.3430095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 Sixth International Workshop on Serverless Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3429880.3430095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

无服务器计算是一种很有前途的云执行模型,它通过提供自动扩展和按需付费等功能,极大地简化了云用户的操作问题。因此,无服务器系统承诺提供一个非常适合临时数据处理的系统。不出所料,许多用于数据处理的无服务器系统/框架最近从研究和行业中出现。然而,系统研究人员、决策者和数据分析师并不了解这些无服务器系统之间的比较。在本文中,我们确定了用于数据处理的现有无服务器框架。我们对不同的系统架构进行定性评估,并使用TPC-H基准进行实验驱动的定量比较,包括性能、成本和可用性。我们的结果表明,三个公开可用的无服务器数据处理框架在对冷数据进行临时查询的性能和成本方面优于相对大小的Apache Spark集群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Evaluation of Serverless Data Processing Frameworks
Serverless computing is a promising cloud execution model that significantly simplifies cloud users' operational concerns by offering features such as auto-scaling and a pay-as-you-go cost model. Consequently, serverless systems promise to provide an excellent fit for ad-hoc data processing. Unsurprisingly, numerous serverless systems/frameworks for data processing emerged recently from research and industry. However, systems researchers, decision-makers, and data analysts are unaware of how these serverless systems compare to each other. In this paper, we identify existing serverless frameworks for data processing. We present a qualitative assessment of different system architectures and an experiment-driven quantitative comparison, including performance, cost, and usability using the TPC-H benchmark. Our results show that the three publicly available serverless data processing frameworks outperform a comparatively sized Apache Spark cluster in terms of performance and cost for ad-hoc queries on cold data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信