Thomas Begin, A. Busson, I. G. Lassous, A. Boukerche
{"title":"基于IEEE 802.11p的车载网络视频点播:分析与量纲","authors":"Thomas Begin, A. Busson, I. G. Lassous, A. Boukerche","doi":"10.1145/3242102.3242109","DOIUrl":null,"url":null,"abstract":"We consider a VoD (Video on-Demand) platform designed for vehicles traveling on a highway or other major roadway. Typically, cars or buses would subscribe to this delivery service so that their passengers get access to a catalog of movies and series stored on a back-end server. Videos are delivered through IEEE 802.11p Road Side Units deployed along the highway. In this paper, we propose a simple analytical and yet accurate solution to estimate (at the speed of a click) two key performance parameters for a VoD platform: (i) the total amount of data downloaded by a vehicle over its journey and (ii) the total \"interruption time'', which corresponds to the time a vehicle spends with the playback of its video interrupted because of an empty buffer. After validating its accuracy against a set of simulations run with ns-3, we show an example of application of our analytical solution for the sizing of an IEEE 802.11p-based VoD platform.","PeriodicalId":241359,"journal":{"name":"Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Video on Demand in IEEE 802.11p-based Vehicular Networks: Analysis and Dimensioning\",\"authors\":\"Thomas Begin, A. Busson, I. G. Lassous, A. Boukerche\",\"doi\":\"10.1145/3242102.3242109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a VoD (Video on-Demand) platform designed for vehicles traveling on a highway or other major roadway. Typically, cars or buses would subscribe to this delivery service so that their passengers get access to a catalog of movies and series stored on a back-end server. Videos are delivered through IEEE 802.11p Road Side Units deployed along the highway. In this paper, we propose a simple analytical and yet accurate solution to estimate (at the speed of a click) two key performance parameters for a VoD platform: (i) the total amount of data downloaded by a vehicle over its journey and (ii) the total \\\"interruption time'', which corresponds to the time a vehicle spends with the playback of its video interrupted because of an empty buffer. After validating its accuracy against a set of simulations run with ns-3, we show an example of application of our analytical solution for the sizing of an IEEE 802.11p-based VoD platform.\",\"PeriodicalId\":241359,\"journal\":{\"name\":\"Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3242102.3242109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3242102.3242109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Video on Demand in IEEE 802.11p-based Vehicular Networks: Analysis and Dimensioning
We consider a VoD (Video on-Demand) platform designed for vehicles traveling on a highway or other major roadway. Typically, cars or buses would subscribe to this delivery service so that their passengers get access to a catalog of movies and series stored on a back-end server. Videos are delivered through IEEE 802.11p Road Side Units deployed along the highway. In this paper, we propose a simple analytical and yet accurate solution to estimate (at the speed of a click) two key performance parameters for a VoD platform: (i) the total amount of data downloaded by a vehicle over its journey and (ii) the total "interruption time'', which corresponds to the time a vehicle spends with the playback of its video interrupted because of an empty buffer. After validating its accuracy against a set of simulations run with ns-3, we show an example of application of our analytical solution for the sizing of an IEEE 802.11p-based VoD platform.