{"title":"采用CMOS技术设计的增益为18.9 dBi的d波段芯片-波导-喇叭(CWH)天线","authors":"Xiaodong Deng, Yihu Li, Wen Wu, Y. Xiong","doi":"10.1109/IEEE-IWS.2015.7164518","DOIUrl":null,"url":null,"abstract":"This paper presents an chip-to-waveguide-horn (CWH) antenna structure to improve silicon-based on-chip antenna gain at D-band. In the proposed CWH antenna structure, a transition from chip to rectangular waveguide is adopted and is followed by a horn for power radiation. For the chip-to-waveguide transition, a high efficiency dielectric resonator antenna (DRA), which is excited by a substrate integrated waveguide (SIW) cavity backed on-chip antenna, is used to transfer the power to the waveguide. The simulated results indicate 45% radiation efficiency and -17 dB reflection coefficient for the CWH antenna at 140 GHz. The proposed CWH antenna is measured by using on-wafer testing method and the measured results show the peak gain of 18.9 dBi at 143 GHz with the 3 dB bandwidth of 21 GHz and the reflection coefficients <;-6 dB from 120-160 GHz.","PeriodicalId":164534,"journal":{"name":"2015 IEEE International Wireless Symposium (IWS 2015)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A D-band chip-to-waveguide-horn (CWH) antenna with 18.9 dBi gain using CMOS technology\",\"authors\":\"Xiaodong Deng, Yihu Li, Wen Wu, Y. Xiong\",\"doi\":\"10.1109/IEEE-IWS.2015.7164518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an chip-to-waveguide-horn (CWH) antenna structure to improve silicon-based on-chip antenna gain at D-band. In the proposed CWH antenna structure, a transition from chip to rectangular waveguide is adopted and is followed by a horn for power radiation. For the chip-to-waveguide transition, a high efficiency dielectric resonator antenna (DRA), which is excited by a substrate integrated waveguide (SIW) cavity backed on-chip antenna, is used to transfer the power to the waveguide. The simulated results indicate 45% radiation efficiency and -17 dB reflection coefficient for the CWH antenna at 140 GHz. The proposed CWH antenna is measured by using on-wafer testing method and the measured results show the peak gain of 18.9 dBi at 143 GHz with the 3 dB bandwidth of 21 GHz and the reflection coefficients <;-6 dB from 120-160 GHz.\",\"PeriodicalId\":164534,\"journal\":{\"name\":\"2015 IEEE International Wireless Symposium (IWS 2015)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Wireless Symposium (IWS 2015)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEE-IWS.2015.7164518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Wireless Symposium (IWS 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEE-IWS.2015.7164518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A D-band chip-to-waveguide-horn (CWH) antenna with 18.9 dBi gain using CMOS technology
This paper presents an chip-to-waveguide-horn (CWH) antenna structure to improve silicon-based on-chip antenna gain at D-band. In the proposed CWH antenna structure, a transition from chip to rectangular waveguide is adopted and is followed by a horn for power radiation. For the chip-to-waveguide transition, a high efficiency dielectric resonator antenna (DRA), which is excited by a substrate integrated waveguide (SIW) cavity backed on-chip antenna, is used to transfer the power to the waveguide. The simulated results indicate 45% radiation efficiency and -17 dB reflection coefficient for the CWH antenna at 140 GHz. The proposed CWH antenna is measured by using on-wafer testing method and the measured results show the peak gain of 18.9 dBi at 143 GHz with the 3 dB bandwidth of 21 GHz and the reflection coefficients <;-6 dB from 120-160 GHz.