A. K. Abu-Affash, Paz Carmi, M. J. Katz, G. Morgenstern
{"title":"多边形的多重覆盖最小化面积总和","authors":"A. K. Abu-Affash, Paz Carmi, M. J. Katz, G. Morgenstern","doi":"10.1142/S021819591100386X","DOIUrl":null,"url":null,"abstract":"We consider a geometric optimization problem that arises in sensor network design. Given a polygon P (possibly with holes) with n vertices, a set Y of m points representing sensors, and an integer k, 1 ≤ k ≤ m. The goal is to assign a sensing range, ri, to each of the sensors yi ∈ Y, such that each point p ∈ P is covered by at least k sensors, and the cost, Σi rαi, of the assignment is minimized, where α is a constant. \n \nIn this paper, we assume that α = 2, that is, find a set of disks centered at points of Y, such that (i) each point in P is covered by at least k disks, and (ii) the sum of the areas of the disks is minimized. We present, for any constant k ≥ 1, a polynomial-time c1-approximation algorithm for this problem, where c1 = c1(k) is a constant. The discrete version, where one has to cover a given set of n points, X, by disks centered at points of Y, arises as a subproblem. We present a polynomial-time c2-approximation algorithm for this problem, where c2 = c2(k) is a constant.","PeriodicalId":285210,"journal":{"name":"International Journal of Computational Geometry and Applications","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Multi Cover of a Polygon Minimizing the Sum of Areas\",\"authors\":\"A. K. Abu-Affash, Paz Carmi, M. J. Katz, G. Morgenstern\",\"doi\":\"10.1142/S021819591100386X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a geometric optimization problem that arises in sensor network design. Given a polygon P (possibly with holes) with n vertices, a set Y of m points representing sensors, and an integer k, 1 ≤ k ≤ m. The goal is to assign a sensing range, ri, to each of the sensors yi ∈ Y, such that each point p ∈ P is covered by at least k sensors, and the cost, Σi rαi, of the assignment is minimized, where α is a constant. \\n \\nIn this paper, we assume that α = 2, that is, find a set of disks centered at points of Y, such that (i) each point in P is covered by at least k disks, and (ii) the sum of the areas of the disks is minimized. We present, for any constant k ≥ 1, a polynomial-time c1-approximation algorithm for this problem, where c1 = c1(k) is a constant. The discrete version, where one has to cover a given set of n points, X, by disks centered at points of Y, arises as a subproblem. We present a polynomial-time c2-approximation algorithm for this problem, where c2 = c2(k) is a constant.\",\"PeriodicalId\":285210,\"journal\":{\"name\":\"International Journal of Computational Geometry and Applications\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Geometry and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S021819591100386X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S021819591100386X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi Cover of a Polygon Minimizing the Sum of Areas
We consider a geometric optimization problem that arises in sensor network design. Given a polygon P (possibly with holes) with n vertices, a set Y of m points representing sensors, and an integer k, 1 ≤ k ≤ m. The goal is to assign a sensing range, ri, to each of the sensors yi ∈ Y, such that each point p ∈ P is covered by at least k sensors, and the cost, Σi rαi, of the assignment is minimized, where α is a constant.
In this paper, we assume that α = 2, that is, find a set of disks centered at points of Y, such that (i) each point in P is covered by at least k disks, and (ii) the sum of the areas of the disks is minimized. We present, for any constant k ≥ 1, a polynomial-time c1-approximation algorithm for this problem, where c1 = c1(k) is a constant. The discrete version, where one has to cover a given set of n points, X, by disks centered at points of Y, arises as a subproblem. We present a polynomial-time c2-approximation algorithm for this problem, where c2 = c2(k) is a constant.