{"title":"常微分方程","authors":"Fabian Immler, J. Hölzl","doi":"10.1137/1.9780898718256.ch3","DOIUrl":null,"url":null,"abstract":"Session Ordinary-Differential-Equations formalizes ordinary differential equations (ODEs) and initial value problems. This work comprises proofs for local and global existence of unique solutions (Picard-Lindelöf theorem). Moreover, it contains a formalization of the (continuous or even differentiable) dependency of the flow on initial conditions as the flow of ODEs. Not in the generated document are the following sessions: • HOL-ODE-Numerics: Rigorous numerical algorithms for computing enclosures of solutions based on Runge-Kutta methods and affine arithmetic. Reachability analysis with splitting and reduction at hyperplanes. • HOL-ODE-Examples: Applications of the numerical algorithms to concrete systems of ODEs (e.g., van der Pol and Lorenz attractor).","PeriodicalId":280633,"journal":{"name":"Arch. Formal Proofs","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Ordinary Differential Equations\",\"authors\":\"Fabian Immler, J. Hölzl\",\"doi\":\"10.1137/1.9780898718256.ch3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Session Ordinary-Differential-Equations formalizes ordinary differential equations (ODEs) and initial value problems. This work comprises proofs for local and global existence of unique solutions (Picard-Lindelöf theorem). Moreover, it contains a formalization of the (continuous or even differentiable) dependency of the flow on initial conditions as the flow of ODEs. Not in the generated document are the following sessions: • HOL-ODE-Numerics: Rigorous numerical algorithms for computing enclosures of solutions based on Runge-Kutta methods and affine arithmetic. Reachability analysis with splitting and reduction at hyperplanes. • HOL-ODE-Examples: Applications of the numerical algorithms to concrete systems of ODEs (e.g., van der Pol and Lorenz attractor).\",\"PeriodicalId\":280633,\"journal\":{\"name\":\"Arch. Formal Proofs\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arch. Formal Proofs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9780898718256.ch3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arch. Formal Proofs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9780898718256.ch3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
摘要
常微分方程部分形式化了常微分方程(ode)和初值问题。这项工作包括局部和全局唯一解存在性的证明(Picard-Lindelöf定理)。此外,它还包含了流对初始条件的(连续的甚至可微的)依赖的形式化,作为ode的流。没有在生成的文档中包含以下会话:•HOL-ODE-Numerics:基于龙格-库塔方法和仿射算法计算解的框的严格数值算法。超平面上具有分裂和约简的可达性分析。•hol - ode -示例:数值算法在ode的具体系统中的应用(例如,van der Pol和Lorenz吸引子)。
Session Ordinary-Differential-Equations formalizes ordinary differential equations (ODEs) and initial value problems. This work comprises proofs for local and global existence of unique solutions (Picard-Lindelöf theorem). Moreover, it contains a formalization of the (continuous or even differentiable) dependency of the flow on initial conditions as the flow of ODEs. Not in the generated document are the following sessions: • HOL-ODE-Numerics: Rigorous numerical algorithms for computing enclosures of solutions based on Runge-Kutta methods and affine arithmetic. Reachability analysis with splitting and reduction at hyperplanes. • HOL-ODE-Examples: Applications of the numerical algorithms to concrete systems of ODEs (e.g., van der Pol and Lorenz attractor).