一种计算效率高的单耳助听器单通道语音增强算法

D. Ayllón, R. Gil-Pita, M. Utrilla-Manso, M. Rosa-Zurera
{"title":"一种计算效率高的单耳助听器单通道语音增强算法","authors":"D. Ayllón, R. Gil-Pita, M. Utrilla-Manso, M. Rosa-Zurera","doi":"10.5281/ZENODO.43843","DOIUrl":null,"url":null,"abstract":"A computationally-efficient single-channel speech enhancement algorithm to improve intelligibility in monaural hearing aids is presented in this paper. The algorithm combines a novel set of features with a simple supervised machine learning technique to estimate the frequency-domain Wiener filter for noise reduction, using extremely low computational resources. Results show a noticeable intelligibility improvement in terms of PESQ score and SNRESI, even for low input SNR, using only a 7% of the computational resources available in a state-of-the-art commercial hearing aid. The performance of the algorithm is comparable to the performance of current algorithms that use more computationally complex features and learning schemas.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A computationally-efficient single-channel speech enhancement algorithm for monaural hearing aids\",\"authors\":\"D. Ayllón, R. Gil-Pita, M. Utrilla-Manso, M. Rosa-Zurera\",\"doi\":\"10.5281/ZENODO.43843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A computationally-efficient single-channel speech enhancement algorithm to improve intelligibility in monaural hearing aids is presented in this paper. The algorithm combines a novel set of features with a simple supervised machine learning technique to estimate the frequency-domain Wiener filter for noise reduction, using extremely low computational resources. Results show a noticeable intelligibility improvement in terms of PESQ score and SNRESI, even for low input SNR, using only a 7% of the computational resources available in a state-of-the-art commercial hearing aid. The performance of the algorithm is comparable to the performance of current algorithms that use more computationally complex features and learning schemas.\",\"PeriodicalId\":198408,\"journal\":{\"name\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.43843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.43843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种计算效率高的单通道语音增强算法,以提高单耳助听器的可理解性。该算法将一组新颖的特征与简单的监督机器学习技术相结合,使用极低的计算资源来估计用于降噪的频域维纳滤波器。结果显示,即使在低输入信噪比的情况下,仅使用最先进的商用助听器中可用的7%的计算资源,PESQ分数和SNRESI的可理解性也有明显改善。该算法的性能可与当前使用更多计算复杂特征和学习模式的算法的性能相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A computationally-efficient single-channel speech enhancement algorithm for monaural hearing aids
A computationally-efficient single-channel speech enhancement algorithm to improve intelligibility in monaural hearing aids is presented in this paper. The algorithm combines a novel set of features with a simple supervised machine learning technique to estimate the frequency-domain Wiener filter for noise reduction, using extremely low computational resources. Results show a noticeable intelligibility improvement in terms of PESQ score and SNRESI, even for low input SNR, using only a 7% of the computational resources available in a state-of-the-art commercial hearing aid. The performance of the algorithm is comparable to the performance of current algorithms that use more computationally complex features and learning schemas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信