{"title":"系统结构的局部发现-应用参数敏感性:一种自适应网格应用的经验技术","authors":"I. Corey, John R. Johnson, J. Vetter","doi":"10.1109/HPDC.2002.1029940","DOIUrl":null,"url":null,"abstract":"This study presents a technique that can significantly improve the performance of a distributed application by allowing the application to locally adapt to architectural characteristics of distinct resources in a distributed system. Application performance is sensitive to system architecture-application parameter pairings. In a distributed or Grid enabled application, a single parameter configuration for the whole application will not always be optimal for every participating resource. In particular, some configurations can significantly degrade performance. Furthermore, the behavior of a system may change during the course of the run. The technique described here provides an automated mechanism for run-time adaptation of application parameters to the local system architecture. Using a scaled-down simulation of a Monte Carlo physics code, we demonstrate that this technique can conservatively achieve speedups up to 65% on individual resources and may even provide order of magnitude speedup in the extreme case.","PeriodicalId":279053,"journal":{"name":"Proceedings 11th IEEE International Symposium on High Performance Distributed Computing","volume":"356 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local discovery of system architecture - application parameter sensitivity: an empirical technique for adaptive grid applications\",\"authors\":\"I. Corey, John R. Johnson, J. Vetter\",\"doi\":\"10.1109/HPDC.2002.1029940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a technique that can significantly improve the performance of a distributed application by allowing the application to locally adapt to architectural characteristics of distinct resources in a distributed system. Application performance is sensitive to system architecture-application parameter pairings. In a distributed or Grid enabled application, a single parameter configuration for the whole application will not always be optimal for every participating resource. In particular, some configurations can significantly degrade performance. Furthermore, the behavior of a system may change during the course of the run. The technique described here provides an automated mechanism for run-time adaptation of application parameters to the local system architecture. Using a scaled-down simulation of a Monte Carlo physics code, we demonstrate that this technique can conservatively achieve speedups up to 65% on individual resources and may even provide order of magnitude speedup in the extreme case.\",\"PeriodicalId\":279053,\"journal\":{\"name\":\"Proceedings 11th IEEE International Symposium on High Performance Distributed Computing\",\"volume\":\"356 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th IEEE International Symposium on High Performance Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPDC.2002.1029940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th IEEE International Symposium on High Performance Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPDC.2002.1029940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Local discovery of system architecture - application parameter sensitivity: an empirical technique for adaptive grid applications
This study presents a technique that can significantly improve the performance of a distributed application by allowing the application to locally adapt to architectural characteristics of distinct resources in a distributed system. Application performance is sensitive to system architecture-application parameter pairings. In a distributed or Grid enabled application, a single parameter configuration for the whole application will not always be optimal for every participating resource. In particular, some configurations can significantly degrade performance. Furthermore, the behavior of a system may change during the course of the run. The technique described here provides an automated mechanism for run-time adaptation of application parameters to the local system architecture. Using a scaled-down simulation of a Monte Carlo physics code, we demonstrate that this technique can conservatively achieve speedups up to 65% on individual resources and may even provide order of magnitude speedup in the extreme case.