{"title":"基于导向鲸优化算法的投票集合恶意软件检测与分类","authors":"M. Eid, M. I. F. Allah","doi":"10.54216/jcim.100102","DOIUrl":null,"url":null,"abstract":"Malware is software that is designed to cause damage to computer systems. Locating malicious software is a crucial task in the cybersecurity industry. Malware authors and security experts are locked in a never-ending conflict. In order to combat modern malware, which often exhibits polymorphic behavior and a wide range of characteristics, novel countermeasures have had to be created. Here, we present a hybrid learning approach to malware detection and classification. In this scenario, we have merged the machine learning techniques of Random Forest and K-Nearest Neighbor Classifier to develop a hybrid learning model. We used current malware and an updated dataset of 10,000 examples of malicious and benign files, with 78 feature values and 6 different malware classes to deal with. We compared the model's results with those of current approaches after training it for both binary and multi-class classification. The suggested methodology may be utilized to create an anti-malware application that is capable of detecting malware on newly collected data.","PeriodicalId":169383,"journal":{"name":"Journal of Cybersecurity and Information Management","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection and Classification of Malware Using Guided Whale Optimization Algorithm for Voting Ensemble\",\"authors\":\"M. Eid, M. I. F. Allah\",\"doi\":\"10.54216/jcim.100102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malware is software that is designed to cause damage to computer systems. Locating malicious software is a crucial task in the cybersecurity industry. Malware authors and security experts are locked in a never-ending conflict. In order to combat modern malware, which often exhibits polymorphic behavior and a wide range of characteristics, novel countermeasures have had to be created. Here, we present a hybrid learning approach to malware detection and classification. In this scenario, we have merged the machine learning techniques of Random Forest and K-Nearest Neighbor Classifier to develop a hybrid learning model. We used current malware and an updated dataset of 10,000 examples of malicious and benign files, with 78 feature values and 6 different malware classes to deal with. We compared the model's results with those of current approaches after training it for both binary and multi-class classification. The suggested methodology may be utilized to create an anti-malware application that is capable of detecting malware on newly collected data.\",\"PeriodicalId\":169383,\"journal\":{\"name\":\"Journal of Cybersecurity and Information Management\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cybersecurity and Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/jcim.100102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cybersecurity and Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jcim.100102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection and Classification of Malware Using Guided Whale Optimization Algorithm for Voting Ensemble
Malware is software that is designed to cause damage to computer systems. Locating malicious software is a crucial task in the cybersecurity industry. Malware authors and security experts are locked in a never-ending conflict. In order to combat modern malware, which often exhibits polymorphic behavior and a wide range of characteristics, novel countermeasures have had to be created. Here, we present a hybrid learning approach to malware detection and classification. In this scenario, we have merged the machine learning techniques of Random Forest and K-Nearest Neighbor Classifier to develop a hybrid learning model. We used current malware and an updated dataset of 10,000 examples of malicious and benign files, with 78 feature values and 6 different malware classes to deal with. We compared the model's results with those of current approaches after training it for both binary and multi-class classification. The suggested methodology may be utilized to create an anti-malware application that is capable of detecting malware on newly collected data.