{"title":"混合特征提取用于自适应人脸图像检索","authors":"A. Alti","doi":"10.4018/ijse.2020010102","DOIUrl":null,"url":null,"abstract":"Existing methods of face emotion recognition have been limited in performance in terms of recognition accuracy and execution time. It is highly important to use efficient techniques for improving this performance. In this article, the authors present an automatic facial image retrieval combining the advantages of color normalization by texture estimators with the gradient vector. Starting from a query face image, an efficient algorithm for human face by hybrid feature extraction provides very interesting results.","PeriodicalId":272943,"journal":{"name":"Int. J. Synth. Emot.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid Features Extraction for Adaptive Face Images Retrieval\",\"authors\":\"A. Alti\",\"doi\":\"10.4018/ijse.2020010102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing methods of face emotion recognition have been limited in performance in terms of recognition accuracy and execution time. It is highly important to use efficient techniques for improving this performance. In this article, the authors present an automatic facial image retrieval combining the advantages of color normalization by texture estimators with the gradient vector. Starting from a query face image, an efficient algorithm for human face by hybrid feature extraction provides very interesting results.\",\"PeriodicalId\":272943,\"journal\":{\"name\":\"Int. J. Synth. Emot.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Synth. Emot.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijse.2020010102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Synth. Emot.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijse.2020010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid Features Extraction for Adaptive Face Images Retrieval
Existing methods of face emotion recognition have been limited in performance in terms of recognition accuracy and execution time. It is highly important to use efficient techniques for improving this performance. In this article, the authors present an automatic facial image retrieval combining the advantages of color normalization by texture estimators with the gradient vector. Starting from a query face image, an efficient algorithm for human face by hybrid feature extraction provides very interesting results.