{"title":"基于强化学习的运动学综合","authors":"Kaz Vermeer, Reinier Kuppens, J. Herder","doi":"10.1115/DETC2018-85529","DOIUrl":null,"url":null,"abstract":"The presented research demonstrates the synthesis of two-dimensional kinematic mechanisms using feature-based reinforcement learning. As a running example the classic challenge of designing a straight-line mechanism is adopted: a mechanism capable of tracing a straight line as part of its trajectory. This paper presents a basic framework, consisting of elements such as mechanism representations, kinematic simulations and learning algorithms, as well as some of the resulting mechanisms and a comparison to prior art. Series of successful mechanisms have been synthesized for path generation of a straight line and figure-eight.","PeriodicalId":138856,"journal":{"name":"Volume 2A: 44th Design Automation Conference","volume":"316 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Kinematic Synthesis Using Reinforcement Learning\",\"authors\":\"Kaz Vermeer, Reinier Kuppens, J. Herder\",\"doi\":\"10.1115/DETC2018-85529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The presented research demonstrates the synthesis of two-dimensional kinematic mechanisms using feature-based reinforcement learning. As a running example the classic challenge of designing a straight-line mechanism is adopted: a mechanism capable of tracing a straight line as part of its trajectory. This paper presents a basic framework, consisting of elements such as mechanism representations, kinematic simulations and learning algorithms, as well as some of the resulting mechanisms and a comparison to prior art. Series of successful mechanisms have been synthesized for path generation of a straight line and figure-eight.\",\"PeriodicalId\":138856,\"journal\":{\"name\":\"Volume 2A: 44th Design Automation Conference\",\"volume\":\"316 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2A: 44th Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/DETC2018-85529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: 44th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-85529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The presented research demonstrates the synthesis of two-dimensional kinematic mechanisms using feature-based reinforcement learning. As a running example the classic challenge of designing a straight-line mechanism is adopted: a mechanism capable of tracing a straight line as part of its trajectory. This paper presents a basic framework, consisting of elements such as mechanism representations, kinematic simulations and learning algorithms, as well as some of the resulting mechanisms and a comparison to prior art. Series of successful mechanisms have been synthesized for path generation of a straight line and figure-eight.