多语言可读性评估中频率与词嵌入的联合学习

NLP-TEA@ACL Pub Date : 2018-07-01 DOI:10.18653/v1/W18-3714
Dieu-Thu Le, Cam-Tu Nguyen, Xiaoliang Wang
{"title":"多语言可读性评估中频率与词嵌入的联合学习","authors":"Dieu-Thu Le, Cam-Tu Nguyen, Xiaoliang Wang","doi":"10.18653/v1/W18-3714","DOIUrl":null,"url":null,"abstract":"This paper describes two models that employ word frequency embeddings to deal with the problem of readability assessment in multiple languages. The task is to determine the difficulty level of a given document, i.e., how hard it is for a reader to fully comprehend the text. The proposed models show how frequency information can be integrated to improve the readability assessment. The experimental results testing on both English and Chinese datasets show that the proposed models improve the results notably when comparing to those using only traditional word embeddings.","PeriodicalId":321264,"journal":{"name":"NLP-TEA@ACL","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Joint learning of frequency and word embeddings for multilingual readability assessment\",\"authors\":\"Dieu-Thu Le, Cam-Tu Nguyen, Xiaoliang Wang\",\"doi\":\"10.18653/v1/W18-3714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes two models that employ word frequency embeddings to deal with the problem of readability assessment in multiple languages. The task is to determine the difficulty level of a given document, i.e., how hard it is for a reader to fully comprehend the text. The proposed models show how frequency information can be integrated to improve the readability assessment. The experimental results testing on both English and Chinese datasets show that the proposed models improve the results notably when comparing to those using only traditional word embeddings.\",\"PeriodicalId\":321264,\"journal\":{\"name\":\"NLP-TEA@ACL\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NLP-TEA@ACL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W18-3714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NLP-TEA@ACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-3714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文描述了两种使用词频嵌入的模型来处理多语言的可读性评估问题。任务是确定给定文档的难度级别,即读者完全理解文本的难度。所提出的模型显示了如何整合频率信息来改进可读性评估。在中英文两种数据集上的实验结果表明,与仅使用传统词嵌入的模型相比,本文提出的模型显著提高了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint learning of frequency and word embeddings for multilingual readability assessment
This paper describes two models that employ word frequency embeddings to deal with the problem of readability assessment in multiple languages. The task is to determine the difficulty level of a given document, i.e., how hard it is for a reader to fully comprehend the text. The proposed models show how frequency information can be integrated to improve the readability assessment. The experimental results testing on both English and Chinese datasets show that the proposed models improve the results notably when comparing to those using only traditional word embeddings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信