{"title":"成功的二项式尾不等式","authors":"Greg Leo","doi":"10.2139/ssrn.3057444","DOIUrl":null,"url":null,"abstract":"I provide a monotonicity result on binomial tail probabilities in terms of the number of successes. Consider two binomial processes with n trials. For any k from 1 to n-1, as long as the expected number of successes in the first process is at least n(k-1)/(n-1) and the expected number of successes in the second process is at least k/(k-1) times larger than that of the first, then the probability of k-1 or fewer successes in the first process is strictly larger than the probability of k or fewer successes in the second.","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Binomial Tail Inequality for Successes\",\"authors\":\"Greg Leo\",\"doi\":\"10.2139/ssrn.3057444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I provide a monotonicity result on binomial tail probabilities in terms of the number of successes. Consider two binomial processes with n trials. For any k from 1 to n-1, as long as the expected number of successes in the first process is at least n(k-1)/(n-1) and the expected number of successes in the second process is at least k/(k-1) times larger than that of the first, then the probability of k-1 or fewer successes in the first process is strictly larger than the probability of k or fewer successes in the second.\",\"PeriodicalId\":260073,\"journal\":{\"name\":\"Mathematics eJournal\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3057444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3057444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
I provide a monotonicity result on binomial tail probabilities in terms of the number of successes. Consider two binomial processes with n trials. For any k from 1 to n-1, as long as the expected number of successes in the first process is at least n(k-1)/(n-1) and the expected number of successes in the second process is at least k/(k-1) times larger than that of the first, then the probability of k-1 or fewer successes in the first process is strictly larger than the probability of k or fewer successes in the second.