基于均值偏移的定向数据聚类

Shou-Jen Chang-Chien, Miin-Shen Yang, W. Hung
{"title":"基于均值偏移的定向数据聚类","authors":"Shou-Jen Chang-Chien, Miin-Shen Yang, W. Hung","doi":"10.1109/IWACI.2010.5585203","DOIUrl":null,"url":null,"abstract":"Clustering methods have been widely applied in various areas. The objective of clustering is to find the data structure and also to partition the data set into groups with similar individuals. A mean shift-based method had been proposed as a clustering algorithm. However, most mean shift-based clustering algorithms are used for numeric data. In this paper, we propose a mean shift-based clustering algorithm for directional data. The clustering algorithm gives us a new way in the analysis of grouped directional data on the plane. Some numerical examples are given to demonstrate its effectiveness and superiority.","PeriodicalId":189187,"journal":{"name":"Third International Workshop on Advanced Computational Intelligence","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Mean shift-based clustering for directional data\",\"authors\":\"Shou-Jen Chang-Chien, Miin-Shen Yang, W. Hung\",\"doi\":\"10.1109/IWACI.2010.5585203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering methods have been widely applied in various areas. The objective of clustering is to find the data structure and also to partition the data set into groups with similar individuals. A mean shift-based method had been proposed as a clustering algorithm. However, most mean shift-based clustering algorithms are used for numeric data. In this paper, we propose a mean shift-based clustering algorithm for directional data. The clustering algorithm gives us a new way in the analysis of grouped directional data on the plane. Some numerical examples are given to demonstrate its effectiveness and superiority.\",\"PeriodicalId\":189187,\"journal\":{\"name\":\"Third International Workshop on Advanced Computational Intelligence\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Workshop on Advanced Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWACI.2010.5585203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Workshop on Advanced Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWACI.2010.5585203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

聚类方法在各个领域得到了广泛的应用。聚类的目标是找到数据结构,并将数据集划分为具有相似个体的组。提出了一种基于均值漂移的聚类算法。然而,大多数基于均值移位的聚类算法用于数值数据。本文提出了一种基于均值偏移的定向数据聚类算法。聚类算法为平面上分组方向数据的分析提供了一种新的方法。算例表明了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mean shift-based clustering for directional data
Clustering methods have been widely applied in various areas. The objective of clustering is to find the data structure and also to partition the data set into groups with similar individuals. A mean shift-based method had been proposed as a clustering algorithm. However, most mean shift-based clustering algorithms are used for numeric data. In this paper, we propose a mean shift-based clustering algorithm for directional data. The clustering algorithm gives us a new way in the analysis of grouped directional data on the plane. Some numerical examples are given to demonstrate its effectiveness and superiority.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信