对准粒子群优化

Z. Cui
{"title":"对准粒子群优化","authors":"Z. Cui","doi":"10.1109/COGINF.2009.5250688","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) simulates the boids' collective behaviors. The original biological background of boid should follow three basic simple steering behaviors: separation, alignment and cohesion. However, to promote a fast convergent speed, the velocity update manner of each boid omits the alignment rule, this may result premature convergence phenomenon. Therefore, in this paper, the alignment rule is added to the velocity update manner for optimizing the multi-modal numerical problems, in which each particle adjusts its moving direction according to the personal historical best position and the alignment direction. Furthermore, a mutation operator is also introduced to enhance the population diversity. Simulation results show the proposed algorithm is effective and efficient.","PeriodicalId":420853,"journal":{"name":"2009 8th IEEE International Conference on Cognitive Informatics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Alignment particle swarm optimization\",\"authors\":\"Z. Cui\",\"doi\":\"10.1109/COGINF.2009.5250688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle swarm optimization (PSO) simulates the boids' collective behaviors. The original biological background of boid should follow three basic simple steering behaviors: separation, alignment and cohesion. However, to promote a fast convergent speed, the velocity update manner of each boid omits the alignment rule, this may result premature convergence phenomenon. Therefore, in this paper, the alignment rule is added to the velocity update manner for optimizing the multi-modal numerical problems, in which each particle adjusts its moving direction according to the personal historical best position and the alignment direction. Furthermore, a mutation operator is also introduced to enhance the population diversity. Simulation results show the proposed algorithm is effective and efficient.\",\"PeriodicalId\":420853,\"journal\":{\"name\":\"2009 8th IEEE International Conference on Cognitive Informatics\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 8th IEEE International Conference on Cognitive Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COGINF.2009.5250688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 8th IEEE International Conference on Cognitive Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COGINF.2009.5250688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

粒子群优化算法(PSO)模拟了生物的集体行为。生物的原始生物背景应该遵循三种基本的简单转向行为:分离、对齐和衔接。然而,为了促进更快的收敛速度,每个体的速度更新方式忽略了对准规则,这可能会导致过早收敛现象。因此,本文在优化多模态数值问题的速度更新方式中加入对准规则,每个粒子根据自身历史最佳位置和对准方向调整自身的运动方向。此外,还引入了突变算子来增强种群的多样性。仿真结果表明,该算法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alignment particle swarm optimization
Particle swarm optimization (PSO) simulates the boids' collective behaviors. The original biological background of boid should follow three basic simple steering behaviors: separation, alignment and cohesion. However, to promote a fast convergent speed, the velocity update manner of each boid omits the alignment rule, this may result premature convergence phenomenon. Therefore, in this paper, the alignment rule is added to the velocity update manner for optimizing the multi-modal numerical problems, in which each particle adjusts its moving direction according to the personal historical best position and the alignment direction. Furthermore, a mutation operator is also introduced to enhance the population diversity. Simulation results show the proposed algorithm is effective and efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信