基于遗传算法的自适应可信融合Web图像检索

W. D. Silva, R. T. Calumby
{"title":"基于遗传算法的自适应可信融合Web图像检索","authors":"W. D. Silva, R. T. Calumby","doi":"10.5753/WEBMEDIA.2018.4563","DOIUrl":null,"url":null,"abstract":"Credibility information gives an indication of which users are most likely to share relevant images on social network feeds and consequently may help estimating the relevance of an image for retrieval purposes. Considering multiple credibilty evidences has be shown as an effective method for image ranking. In order to select and combine multiple credibility descriptors, this work proposes a genetic algorithm-based automatic context-adaptive weight adjustment model. The experimental results show promising effectiveness when compared to the baseline.","PeriodicalId":314723,"journal":{"name":"Anais Estendidos do XXIV Simpósio Brasileiro de Sistemas Multimídia e Web","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recuperação de Imagens na Web com Fusão Adaptativa de Credibilidade Baseada em Algoritmos Genéticos\",\"authors\":\"W. D. Silva, R. T. Calumby\",\"doi\":\"10.5753/WEBMEDIA.2018.4563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Credibility information gives an indication of which users are most likely to share relevant images on social network feeds and consequently may help estimating the relevance of an image for retrieval purposes. Considering multiple credibilty evidences has be shown as an effective method for image ranking. In order to select and combine multiple credibility descriptors, this work proposes a genetic algorithm-based automatic context-adaptive weight adjustment model. The experimental results show promising effectiveness when compared to the baseline.\",\"PeriodicalId\":314723,\"journal\":{\"name\":\"Anais Estendidos do XXIV Simpósio Brasileiro de Sistemas Multimídia e Web\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais Estendidos do XXIV Simpósio Brasileiro de Sistemas Multimídia e Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/WEBMEDIA.2018.4563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XXIV Simpósio Brasileiro de Sistemas Multimídia e Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/WEBMEDIA.2018.4563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可信度信息表明哪些用户最有可能在社交网络feed上分享相关图像,因此可能有助于估计用于检索目的的图像的相关性。考虑多信度证据是一种有效的图像排序方法。为了选择和组合多个可信度描述符,本文提出了一种基于遗传算法的上下文自适应权重自动调整模型。与基线相比,实验结果显示出良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recuperação de Imagens na Web com Fusão Adaptativa de Credibilidade Baseada em Algoritmos Genéticos
Credibility information gives an indication of which users are most likely to share relevant images on social network feeds and consequently may help estimating the relevance of an image for retrieval purposes. Considering multiple credibilty evidences has be shown as an effective method for image ranking. In order to select and combine multiple credibility descriptors, this work proposes a genetic algorithm-based automatic context-adaptive weight adjustment model. The experimental results show promising effectiveness when compared to the baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信