一类一般的递归最小方差无失真响应估计

J. Galy, É. Chaumette, F. Vincent
{"title":"一类一般的递归最小方差无失真响应估计","authors":"J. Galy, É. Chaumette, F. Vincent","doi":"10.1109/CAMSAP.2017.8313131","DOIUrl":null,"url":null,"abstract":"In deterministic parameters estimation, it is common place to design a minimum variance distortionless response estimator (MVDRE) instead of a maximum likelihood estimator to tackle the problem of identifying the components of observations formed from a linear superposition of individual signals to noisy data. When several observations are available and the individual signals are allowed to perform a random walk between observations, one obtains the general class of linear discrete state-space models. This paper introduces a novel recursive formulation of the MVDREs of individual signals compatible with recursive estimation.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"730 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A general class of recursive minimum variance distortionless response estimators\",\"authors\":\"J. Galy, É. Chaumette, F. Vincent\",\"doi\":\"10.1109/CAMSAP.2017.8313131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In deterministic parameters estimation, it is common place to design a minimum variance distortionless response estimator (MVDRE) instead of a maximum likelihood estimator to tackle the problem of identifying the components of observations formed from a linear superposition of individual signals to noisy data. When several observations are available and the individual signals are allowed to perform a random walk between observations, one obtains the general class of linear discrete state-space models. This paper introduces a novel recursive formulation of the MVDREs of individual signals compatible with recursive estimation.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"730 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在确定性参数估计中,通常设计最小方差无失真响应估计器(MVDRE)而不是最大似然估计器来解决识别由单个信号与噪声数据的线性叠加形成的观测分量的问题。当有几个观测值可用,并且允许单个信号在观测值之间进行随机游走时,就得到了一般的线性离散状态空间模型。本文介绍了一种新的与递归估计兼容的单个信号MVDREs递归公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A general class of recursive minimum variance distortionless response estimators
In deterministic parameters estimation, it is common place to design a minimum variance distortionless response estimator (MVDRE) instead of a maximum likelihood estimator to tackle the problem of identifying the components of observations formed from a linear superposition of individual signals to noisy data. When several observations are available and the individual signals are allowed to perform a random walk between observations, one obtains the general class of linear discrete state-space models. This paper introduces a novel recursive formulation of the MVDREs of individual signals compatible with recursive estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信