基于wisard的CDnet方法

Massimo De Gregorio, Maurizio Giordano
{"title":"基于wisard的CDnet方法","authors":"Massimo De Gregorio, Maurizio Giordano","doi":"10.1109/BRICS-CCI-CBIC.2013.37","DOIUrl":null,"url":null,"abstract":"In this paper, we present a WiSARD-based system (CwisarD) facing the problem of change detection (CD) in multiple images of the same scene taken at different time, and, in particular, motion in videos of the same view taken by a static camera. Although the proposed weightless neural approach is very simple and straightforward, it provides very good results in challenging with others approaches on the ChangeDetection.net benchmark dataset (CDnet).","PeriodicalId":306195,"journal":{"name":"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A WiSARD-Based Approach to CDnet\",\"authors\":\"Massimo De Gregorio, Maurizio Giordano\",\"doi\":\"10.1109/BRICS-CCI-CBIC.2013.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a WiSARD-based system (CwisarD) facing the problem of change detection (CD) in multiple images of the same scene taken at different time, and, in particular, motion in videos of the same view taken by a static camera. Although the proposed weightless neural approach is very simple and straightforward, it provides very good results in challenging with others approaches on the ChangeDetection.net benchmark dataset (CDnet).\",\"PeriodicalId\":306195,\"journal\":{\"name\":\"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRICS-CCI-CBIC.2013.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRICS-CCI-CBIC.2013.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在本文中,我们提出了一种基于wisard的系统(CwisarD),该系统针对同一场景在不同时间拍摄的多幅图像中的变化检测问题,特别是静态摄像机拍摄的同一视图视频中的运动检测问题。虽然提出的无权重神经方法非常简单和直接,但它在ChangeDetection.net基准数据集(CDnet)上与其他方法进行挑战时提供了非常好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A WiSARD-Based Approach to CDnet
In this paper, we present a WiSARD-based system (CwisarD) facing the problem of change detection (CD) in multiple images of the same scene taken at different time, and, in particular, motion in videos of the same view taken by a static camera. Although the proposed weightless neural approach is very simple and straightforward, it provides very good results in challenging with others approaches on the ChangeDetection.net benchmark dataset (CDnet).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信