{"title":"基于广义概率下降法的判别训练新算法","authors":"Shigeru Katagiri, C.-H. Lee, B. Juang","doi":"10.1109/NNSP.1991.239512","DOIUrl":null,"url":null,"abstract":"The authors developed a generalized probabilistic descent (GPD) method by extending the classical theory on adaptive training by Amari (1967). Their generalization makes it possible to treat dynamic patterns (of a variable duration or dimension) such as speech as well as static patterns (of a fixed duration or dimension), for pattern classification problems. The key ideas of GPD formulations include the embedding of time normalization and the incorporation of smooth classification error functions into the gradient search optimization objectives. As a result, a family of new discriminative training algorithms can be rigorously formulated for various kinds of classifier frameworks, including the popular dynamic time warping (DTW) and hidden Markov model (HMM). Experimental results are also provided to show the superiority of this new family of GPD-based, adaptive training algorithms for speech recognition.<<ETX>>","PeriodicalId":354832,"journal":{"name":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","volume":"254 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"167","resultStr":"{\"title\":\"New discriminative training algorithms based on the generalized probabilistic descent method\",\"authors\":\"Shigeru Katagiri, C.-H. Lee, B. Juang\",\"doi\":\"10.1109/NNSP.1991.239512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors developed a generalized probabilistic descent (GPD) method by extending the classical theory on adaptive training by Amari (1967). Their generalization makes it possible to treat dynamic patterns (of a variable duration or dimension) such as speech as well as static patterns (of a fixed duration or dimension), for pattern classification problems. The key ideas of GPD formulations include the embedding of time normalization and the incorporation of smooth classification error functions into the gradient search optimization objectives. As a result, a family of new discriminative training algorithms can be rigorously formulated for various kinds of classifier frameworks, including the popular dynamic time warping (DTW) and hidden Markov model (HMM). Experimental results are also provided to show the superiority of this new family of GPD-based, adaptive training algorithms for speech recognition.<<ETX>>\",\"PeriodicalId\":354832,\"journal\":{\"name\":\"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop\",\"volume\":\"254 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"167\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.1991.239512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1991.239512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New discriminative training algorithms based on the generalized probabilistic descent method
The authors developed a generalized probabilistic descent (GPD) method by extending the classical theory on adaptive training by Amari (1967). Their generalization makes it possible to treat dynamic patterns (of a variable duration or dimension) such as speech as well as static patterns (of a fixed duration or dimension), for pattern classification problems. The key ideas of GPD formulations include the embedding of time normalization and the incorporation of smooth classification error functions into the gradient search optimization objectives. As a result, a family of new discriminative training algorithms can be rigorously formulated for various kinds of classifier frameworks, including the popular dynamic time warping (DTW) and hidden Markov model (HMM). Experimental results are also provided to show the superiority of this new family of GPD-based, adaptive training algorithms for speech recognition.<>