基于PSO-RBF网络的PUMA560机械手运动学逆解方法

Zhe Ming Li, Chun Gui Li, S. Lv
{"title":"基于PSO-RBF网络的PUMA560机械手运动学逆解方法","authors":"Zhe Ming Li, Chun Gui Li, S. Lv","doi":"10.1109/ICNC.2012.6234507","DOIUrl":null,"url":null,"abstract":"This paper describes the use of particle swarm algorithm and k-nearest neighbor method to optimize the process of radial basis function (RBF) network and we use the Denavit-Hartenberg (DH) method to research PUMA560 robotics, the results of the forward kinematics is derived as the RBF network training samples. We use six identical RBF network of twelve-input, single output, to achieve a PUMA560 inverse kinematics calculation. Simulation results show that the results obtained with this method has high accuracy and fast convergence.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A method for solving inverse kinematics of PUMA560 manipulator based on PSO-RBF network\",\"authors\":\"Zhe Ming Li, Chun Gui Li, S. Lv\",\"doi\":\"10.1109/ICNC.2012.6234507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the use of particle swarm algorithm and k-nearest neighbor method to optimize the process of radial basis function (RBF) network and we use the Denavit-Hartenberg (DH) method to research PUMA560 robotics, the results of the forward kinematics is derived as the RBF network training samples. We use six identical RBF network of twelve-input, single output, to achieve a PUMA560 inverse kinematics calculation. Simulation results show that the results obtained with this method has high accuracy and fast convergence.\",\"PeriodicalId\":404981,\"journal\":{\"name\":\"2012 8th International Conference on Natural Computation\",\"volume\":\"203 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.6234507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文介绍了利用粒子群算法和k近邻法对径向基函数(RBF)网络的过程进行优化,并利用Denavit-Hartenberg (DH)方法对PUMA560机器人进行了研究,得到的正运动学结果作为RBF网络的训练样本。采用6个相同的12输入、单输出RBF网络,实现PUMA560的逆运动学计算。仿真结果表明,该方法具有精度高、收敛速度快的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method for solving inverse kinematics of PUMA560 manipulator based on PSO-RBF network
This paper describes the use of particle swarm algorithm and k-nearest neighbor method to optimize the process of radial basis function (RBF) network and we use the Denavit-Hartenberg (DH) method to research PUMA560 robotics, the results of the forward kinematics is derived as the RBF network training samples. We use six identical RBF network of twelve-input, single output, to achieve a PUMA560 inverse kinematics calculation. Simulation results show that the results obtained with this method has high accuracy and fast convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信