一个随机中心环绕自下而上的视觉注意模型,用于显著区域检测

T. Vikram, M. Tscherepanow, B. Wrede
{"title":"一个随机中心环绕自下而上的视觉注意模型,用于显著区域检测","authors":"T. Vikram, M. Tscherepanow, B. Wrede","doi":"10.1109/WACV.2011.5711499","DOIUrl":null,"url":null,"abstract":"In this article, we propose a bottom-up saliency model which works on capturing the contrast between random pixels in an image. The model is explained on the basis of the stimulus bias between two given stimuli (pixel intensity values) in an image and has a minimal set of tunable parameters. The methodology does not require any training bases or priors. We followed an established experimental setting and obtained state-of-the-art-results for salient region detection on the MSR dataset. Further experiments demonstrate that our method is robust to noise and has, in comparison to six other state-of-the-art models, a consistent performance in terms of recall, precision and F-measure.","PeriodicalId":424724,"journal":{"name":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A random center surround bottom up visual attention model useful for salient region detection\",\"authors\":\"T. Vikram, M. Tscherepanow, B. Wrede\",\"doi\":\"10.1109/WACV.2011.5711499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose a bottom-up saliency model which works on capturing the contrast between random pixels in an image. The model is explained on the basis of the stimulus bias between two given stimuli (pixel intensity values) in an image and has a minimal set of tunable parameters. The methodology does not require any training bases or priors. We followed an established experimental setting and obtained state-of-the-art-results for salient region detection on the MSR dataset. Further experiments demonstrate that our method is robust to noise and has, in comparison to six other state-of-the-art models, a consistent performance in terms of recall, precision and F-measure.\",\"PeriodicalId\":424724,\"journal\":{\"name\":\"2011 IEEE Workshop on Applications of Computer Vision (WACV)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2011.5711499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2011.5711499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在本文中,我们提出了一种自下而上的显著性模型,用于捕获图像中随机像素之间的对比度。该模型是基于图像中两个给定刺激(像素强度值)之间的刺激偏差来解释的,并且具有最小的可调参数集。该方法不需要任何培训基础或经验。我们遵循既定的实验设置,并获得了在MSR数据集上显著区域检测的最先进结果。进一步的实验表明,我们的方法对噪声具有鲁棒性,并且与其他六种最先进的模型相比,在召回率、精度和F-measure方面具有一致的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A random center surround bottom up visual attention model useful for salient region detection
In this article, we propose a bottom-up saliency model which works on capturing the contrast between random pixels in an image. The model is explained on the basis of the stimulus bias between two given stimuli (pixel intensity values) in an image and has a minimal set of tunable parameters. The methodology does not require any training bases or priors. We followed an established experimental setting and obtained state-of-the-art-results for salient region detection on the MSR dataset. Further experiments demonstrate that our method is robust to noise and has, in comparison to six other state-of-the-art models, a consistent performance in terms of recall, precision and F-measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信