{"title":"使用多台机器处理大量纠错代码","authors":"J. Feldman","doi":"10.1109/ITW.2006.1633806","DOIUrl":null,"url":null,"abstract":"We investigate the problem of using many machines to represent, encode and decode an error-correcting code with an extremely large block length. Standard algorithms for encoding and decoding run into problems when scaled to a block length that does not allow random access to the data. We apply the massive computing infrastructure at Google together with the MapReduce programming abstraction to encode and decode a Tornado code over the erasure channel.","PeriodicalId":293144,"journal":{"name":"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Using Many Machines to Handle an Enormous Error-Correcting Code\",\"authors\":\"J. Feldman\",\"doi\":\"10.1109/ITW.2006.1633806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the problem of using many machines to represent, encode and decode an error-correcting code with an extremely large block length. Standard algorithms for encoding and decoding run into problems when scaled to a block length that does not allow random access to the data. We apply the massive computing infrastructure at Google together with the MapReduce programming abstraction to encode and decode a Tornado code over the erasure channel.\",\"PeriodicalId\":293144,\"journal\":{\"name\":\"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2006.1633806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2006.1633806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Many Machines to Handle an Enormous Error-Correcting Code
We investigate the problem of using many machines to represent, encode and decode an error-correcting code with an extremely large block length. Standard algorithms for encoding and decoding run into problems when scaled to a block length that does not allow random access to the data. We apply the massive computing infrastructure at Google together with the MapReduce programming abstraction to encode and decode a Tornado code over the erasure channel.