部分可观察的人工密集装配过程的自动偏差检测

Ouijdane Guiza, Christoph Mayr-Dorn, G. Weichhart, M. Mayrhofer, Bahman Bahman Zangi, Alexander Egyed, Björn Fanta, Martin Gieler
{"title":"部分可观察的人工密集装配过程的自动偏差检测","authors":"Ouijdane Guiza, Christoph Mayr-Dorn, G. Weichhart, M. Mayrhofer, Bahman Bahman Zangi, Alexander Egyed, Björn Fanta, Martin Gieler","doi":"10.1109/INDIN45523.2021.9557502","DOIUrl":null,"url":null,"abstract":"Unforeseen situations on the shopfloor cause the assembly process to divert from its expected progress. To be able to overcome these deviations in a timely manner, assembly process monitoring and early deviation detection are necessary. However, legal regulations and union policies often limit the direct monitoring of human-intensive assembly processes. Grounded in an industry use case, this paper outlines a novel approach that, based on indirect privacy-respecting monitored data from the shopfloor, enables the near real-time detection of multiple types of process deviations. In doing so, this paper specifically addresses uncertainties stemming from indirect shopfloor observations and how to reason in their presence.","PeriodicalId":370921,"journal":{"name":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automated Deviation Detection for Partially-Observable Human-Intensive Assembly Processes\",\"authors\":\"Ouijdane Guiza, Christoph Mayr-Dorn, G. Weichhart, M. Mayrhofer, Bahman Bahman Zangi, Alexander Egyed, Björn Fanta, Martin Gieler\",\"doi\":\"10.1109/INDIN45523.2021.9557502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unforeseen situations on the shopfloor cause the assembly process to divert from its expected progress. To be able to overcome these deviations in a timely manner, assembly process monitoring and early deviation detection are necessary. However, legal regulations and union policies often limit the direct monitoring of human-intensive assembly processes. Grounded in an industry use case, this paper outlines a novel approach that, based on indirect privacy-respecting monitored data from the shopfloor, enables the near real-time detection of multiple types of process deviations. In doing so, this paper specifically addresses uncertainties stemming from indirect shopfloor observations and how to reason in their presence.\",\"PeriodicalId\":370921,\"journal\":{\"name\":\"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN45523.2021.9557502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45523.2021.9557502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

车间的意外情况导致装配过程偏离预期进度。为了能够及时克服这些偏差,装配过程监控和早期偏差检测是必要的。然而,法律法规和工会政策往往限制了对人力密集型组装过程的直接监控。本文以一个行业用例为基础,概述了一种新颖的方法,该方法基于车间的间接隐私监控数据,可以近乎实时地检测多种类型的过程偏差。在这样做的过程中,本文特别讨论了间接车间观察产生的不确定性,以及如何在它们存在的情况下进行推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Deviation Detection for Partially-Observable Human-Intensive Assembly Processes
Unforeseen situations on the shopfloor cause the assembly process to divert from its expected progress. To be able to overcome these deviations in a timely manner, assembly process monitoring and early deviation detection are necessary. However, legal regulations and union policies often limit the direct monitoring of human-intensive assembly processes. Grounded in an industry use case, this paper outlines a novel approach that, based on indirect privacy-respecting monitored data from the shopfloor, enables the near real-time detection of multiple types of process deviations. In doing so, this paper specifically addresses uncertainties stemming from indirect shopfloor observations and how to reason in their presence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信