Jianyin Fan, Haoran Xu, Yuwei Du, Jing Jin, Qiang Wang
{"title":"基于强化学习的肌肉骨骼机器人肘部设计与控制","authors":"Jianyin Fan, Haoran Xu, Yuwei Du, Jing Jin, Qiang Wang","doi":"10.23919/APSIPAASC55919.2022.9980219","DOIUrl":null,"url":null,"abstract":"The muscle-skeleton body structure and learning ability allow natural creatures to adapt to the complex environment. These can also make robots more adaptive in human-robot interaction scenarios. In this work, we implement a humanoid muscle-skeleton robot elbow joint actuated by two antagonistic pneumatic artificial muscles (PAMs). A reinforcement learning algorithm based on soft actor-critic (SAC) is adopted to learn the control policy of the proposed elbow joint. Lower action space and hindsight experience replay (HER) further reduce training time, and the temperature factor is fixed during the training process for small steady-state error. An elbow model is implemented in the simulation to verify the training procedure for our real robot elbow platform. The experimental results show that the RL learning procedure can learn control policies in the robot elbow prototype, and the steady-state error is within 0.64% after 1 s of control time.","PeriodicalId":382967,"journal":{"name":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"343 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Control of a Muscle-skeleton Robot Elbow based on Reinforcement Learning\",\"authors\":\"Jianyin Fan, Haoran Xu, Yuwei Du, Jing Jin, Qiang Wang\",\"doi\":\"10.23919/APSIPAASC55919.2022.9980219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The muscle-skeleton body structure and learning ability allow natural creatures to adapt to the complex environment. These can also make robots more adaptive in human-robot interaction scenarios. In this work, we implement a humanoid muscle-skeleton robot elbow joint actuated by two antagonistic pneumatic artificial muscles (PAMs). A reinforcement learning algorithm based on soft actor-critic (SAC) is adopted to learn the control policy of the proposed elbow joint. Lower action space and hindsight experience replay (HER) further reduce training time, and the temperature factor is fixed during the training process for small steady-state error. An elbow model is implemented in the simulation to verify the training procedure for our real robot elbow platform. The experimental results show that the RL learning procedure can learn control policies in the robot elbow prototype, and the steady-state error is within 0.64% after 1 s of control time.\",\"PeriodicalId\":382967,\"journal\":{\"name\":\"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"343 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/APSIPAASC55919.2022.9980219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPAASC55919.2022.9980219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Control of a Muscle-skeleton Robot Elbow based on Reinforcement Learning
The muscle-skeleton body structure and learning ability allow natural creatures to adapt to the complex environment. These can also make robots more adaptive in human-robot interaction scenarios. In this work, we implement a humanoid muscle-skeleton robot elbow joint actuated by two antagonistic pneumatic artificial muscles (PAMs). A reinforcement learning algorithm based on soft actor-critic (SAC) is adopted to learn the control policy of the proposed elbow joint. Lower action space and hindsight experience replay (HER) further reduce training time, and the temperature factor is fixed during the training process for small steady-state error. An elbow model is implemented in the simulation to verify the training procedure for our real robot elbow platform. The experimental results show that the RL learning procedure can learn control policies in the robot elbow prototype, and the steady-state error is within 0.64% after 1 s of control time.