智能蓝图:简单的传感器如何协同绘制自己在家中的位置

Jiakang Lu, Yamina Taskin Shams, K. Whitehouse
{"title":"智能蓝图:简单的传感器如何协同绘制自己在家中的位置","authors":"Jiakang Lu, Yamina Taskin Shams, K. Whitehouse","doi":"10.1145/2629441","DOIUrl":null,"url":null,"abstract":"Off-the-shelf home automation technology is making it easier than ever for people to convert their own homes into smart homes. However, manual configuration is tedious and error-prone. In this article, we present and compare a family of solutions that automatically generate a map of the home and the devices within it using data from the smart home sensors themselves (e.g., light and motion sensors). These solutions can be used to automatically configure home automation systems or to automatically produce an intuitive map-like interface for visualizing sensor data and interacting with controllers. We call our approach Smart Blueprints because it automatically maps out the unique configuration of each smart home. We demonstrate the Smart Blueprints using a variety of sensor combinations, including light sensors, motion sensors, and magnetometers deployed on the doors and/or windows of the home. For evaluation of each combination on sensor-map generation, we deployed more than 200 sensors in seven different houses at different locations and compared the ability to use a variety of techniques to map out the configuration. We show that, in almost all houses, our system can automatically narrow the configuration down to 1--5 candidates per home using only one week of collected data.","PeriodicalId":263540,"journal":{"name":"ACM Trans. Sens. Networks","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Smart Blueprints: How Simple Sensors Can Collaboratively Map Out Their Own Locations in the Home\",\"authors\":\"Jiakang Lu, Yamina Taskin Shams, K. Whitehouse\",\"doi\":\"10.1145/2629441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Off-the-shelf home automation technology is making it easier than ever for people to convert their own homes into smart homes. However, manual configuration is tedious and error-prone. In this article, we present and compare a family of solutions that automatically generate a map of the home and the devices within it using data from the smart home sensors themselves (e.g., light and motion sensors). These solutions can be used to automatically configure home automation systems or to automatically produce an intuitive map-like interface for visualizing sensor data and interacting with controllers. We call our approach Smart Blueprints because it automatically maps out the unique configuration of each smart home. We demonstrate the Smart Blueprints using a variety of sensor combinations, including light sensors, motion sensors, and magnetometers deployed on the doors and/or windows of the home. For evaluation of each combination on sensor-map generation, we deployed more than 200 sensors in seven different houses at different locations and compared the ability to use a variety of techniques to map out the configuration. We show that, in almost all houses, our system can automatically narrow the configuration down to 1--5 candidates per home using only one week of collected data.\",\"PeriodicalId\":263540,\"journal\":{\"name\":\"ACM Trans. Sens. Networks\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Sens. Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2629441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Sens. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2629441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

现成的家庭自动化技术使人们比以往任何时候都更容易将自己的家改造成智能家居。但是,手动配置是乏味且容易出错的。在本文中,我们介绍并比较了一系列解决方案,这些解决方案使用智能家居传感器本身(例如,光和运动传感器)的数据自动生成家庭和其中设备的地图。这些解决方案可用于自动配置家庭自动化系统,或自动生成直观的类似地图的界面,用于可视化传感器数据并与控制器交互。我们称我们的方法为智能蓝图,因为它会自动绘制出每个智能家居的独特配置。我们使用各种传感器组合演示智能蓝图,包括部署在家庭门和/或窗户上的光传感器、运动传感器和磁力计。为了评估传感器地图生成的每种组合,我们在七个不同位置的不同房屋中部署了200多个传感器,并比较了使用各种技术绘制配置的能力。我们表明,在几乎所有的家庭中,我们的系统可以自动将配置缩小到1- 5个候选家庭,仅使用一周收集的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart Blueprints: How Simple Sensors Can Collaboratively Map Out Their Own Locations in the Home
Off-the-shelf home automation technology is making it easier than ever for people to convert their own homes into smart homes. However, manual configuration is tedious and error-prone. In this article, we present and compare a family of solutions that automatically generate a map of the home and the devices within it using data from the smart home sensors themselves (e.g., light and motion sensors). These solutions can be used to automatically configure home automation systems or to automatically produce an intuitive map-like interface for visualizing sensor data and interacting with controllers. We call our approach Smart Blueprints because it automatically maps out the unique configuration of each smart home. We demonstrate the Smart Blueprints using a variety of sensor combinations, including light sensors, motion sensors, and magnetometers deployed on the doors and/or windows of the home. For evaluation of each combination on sensor-map generation, we deployed more than 200 sensors in seven different houses at different locations and compared the ability to use a variety of techniques to map out the configuration. We show that, in almost all houses, our system can automatically narrow the configuration down to 1--5 candidates per home using only one week of collected data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信