人类反馈促进NLU-ML模型的持续学习机制

G. Abinaya, Gyan Ranjan, P. Aswin Karthik
{"title":"人类反馈促进NLU-ML模型的持续学习机制","authors":"G. Abinaya, Gyan Ranjan, P. Aswin Karthik","doi":"10.1109/ICCIDS.2019.8862102","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel framework that enables a machine learning model to constantly learn over a period of time and hence improve the performance with time and more data. We have compared the performance of different models which were trained only on the actual data against models trained with the data aided by the feedback collected by the automated framework.","PeriodicalId":196915,"journal":{"name":"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)","volume":"344 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Continuous learning mechanism of NLU-ML models boosted by human feedback\",\"authors\":\"G. Abinaya, Gyan Ranjan, P. Aswin Karthik\",\"doi\":\"10.1109/ICCIDS.2019.8862102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel framework that enables a machine learning model to constantly learn over a period of time and hence improve the performance with time and more data. We have compared the performance of different models which were trained only on the actual data against models trained with the data aided by the feedback collected by the automated framework.\",\"PeriodicalId\":196915,\"journal\":{\"name\":\"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)\",\"volume\":\"344 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIDS.2019.8862102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIDS.2019.8862102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一个新的框架,使机器学习模型能够在一段时间内不断学习,从而随着时间和数据的增加而提高性能。我们比较了仅在实际数据上训练的不同模型的性能,以及使用自动化框架收集的反馈辅助数据训练的模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous learning mechanism of NLU-ML models boosted by human feedback
In this paper, we propose a novel framework that enables a machine learning model to constantly learn over a period of time and hence improve the performance with time and more data. We have compared the performance of different models which were trained only on the actual data against models trained with the data aided by the feedback collected by the automated framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信