L10上层结构合金的平面上层结构缺陷

A. Khalikov, Yu. V. Bebikhov, E. Korznikova, S. Dmitriev
{"title":"L10上层结构合金的平面上层结构缺陷","authors":"A. Khalikov, Yu. V. Bebikhov, E. Korznikova, S. Dmitriev","doi":"10.18323/2782-4039-2022-3-2-90-98","DOIUrl":null,"url":null,"abstract":"Planar superstructural defects have a great influence on the mechanical, functional properties of binary ordered alloys of the L10 superstructure based on the fcc lattice, but there is no complete analysis of their structure and energy in the literature. For the L10 superstructure alloys of the stoichiometric composition AB, the paper gives the expressions for calculating the sublimation energy and the energy of a planar superstructural defect in the model of hard coordination spheres and pair interatomic interactions. The crystal lattice tetragonality was not taken into account. The authors presented the ordered alloy structure as a union of four monoatomic simple cubic lattices, two of which are occupied by A atoms, and the other two by B atoms. This approach allows calculating the sublimation energy required for crystal evaporation. The first eight coordination spheres were taken into account in the work. The paper shows an algorithm for determining all possible geometrically different representations of the L10 superstructure with the same sublimation energy, gives an expression for finding the planes of occurrence of all possible conservative antiphase boundaries. The study identified that the conservative and nonconservative antiphase boundaries, as well as conservative and nonconservative boundaries of C-domains are observed in the binary ordered alloys of the L10 superstructure based on the fcc lattice. The algorithms described in this work make it possible to carry out a crystal-geometric analysis of planar defects in both binary and multicomponent ordered alloys with various superstructures.","PeriodicalId":251458,"journal":{"name":"Frontier materials & technologies","volume":"73 32","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Planar superstructural defects in the alloys with L10 superstructure\",\"authors\":\"A. Khalikov, Yu. V. Bebikhov, E. Korznikova, S. Dmitriev\",\"doi\":\"10.18323/2782-4039-2022-3-2-90-98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Planar superstructural defects have a great influence on the mechanical, functional properties of binary ordered alloys of the L10 superstructure based on the fcc lattice, but there is no complete analysis of their structure and energy in the literature. For the L10 superstructure alloys of the stoichiometric composition AB, the paper gives the expressions for calculating the sublimation energy and the energy of a planar superstructural defect in the model of hard coordination spheres and pair interatomic interactions. The crystal lattice tetragonality was not taken into account. The authors presented the ordered alloy structure as a union of four monoatomic simple cubic lattices, two of which are occupied by A atoms, and the other two by B atoms. This approach allows calculating the sublimation energy required for crystal evaporation. The first eight coordination spheres were taken into account in the work. The paper shows an algorithm for determining all possible geometrically different representations of the L10 superstructure with the same sublimation energy, gives an expression for finding the planes of occurrence of all possible conservative antiphase boundaries. The study identified that the conservative and nonconservative antiphase boundaries, as well as conservative and nonconservative boundaries of C-domains are observed in the binary ordered alloys of the L10 superstructure based on the fcc lattice. The algorithms described in this work make it possible to carry out a crystal-geometric analysis of planar defects in both binary and multicomponent ordered alloys with various superstructures.\",\"PeriodicalId\":251458,\"journal\":{\"name\":\"Frontier materials & technologies\",\"volume\":\"73 32\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontier materials & technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18323/2782-4039-2022-3-2-90-98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontier materials & technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18323/2782-4039-2022-3-2-90-98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

平面上结构缺陷对基于fcc晶格的L10上结构二元有序合金的力学、功能性能影响较大,但文献中尚未对其结构和能量进行完整的分析。对于化学量组成为AB的L10上层结构合金,本文给出了硬配位球和原子对相互作用模型中升华能和平面上层结构缺陷能的计算表达式。没有考虑晶格的四方性。作者将有序合金结构描述为四个单原子简单立方晶格的结合,其中两个被a原子占据,另外两个被B原子占据。这种方法允许计算结晶蒸发所需的升华能。在工作中考虑到前八个协调领域。本文给出了一种确定具有相同升华能的L10上层结构的所有可能的几何不同表示的算法,给出了求所有可能的保守反相边界的出现平面的表达式。研究发现,基于fcc晶格的L10上层结构二元有序合金中存在保守和非保守的反相边界,以及c畴的保守和非保守边界。本工作中描述的算法使得对具有各种上层结构的二元和多组分有序合金中的平面缺陷进行晶体几何分析成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Planar superstructural defects in the alloys with L10 superstructure
Planar superstructural defects have a great influence on the mechanical, functional properties of binary ordered alloys of the L10 superstructure based on the fcc lattice, but there is no complete analysis of their structure and energy in the literature. For the L10 superstructure alloys of the stoichiometric composition AB, the paper gives the expressions for calculating the sublimation energy and the energy of a planar superstructural defect in the model of hard coordination spheres and pair interatomic interactions. The crystal lattice tetragonality was not taken into account. The authors presented the ordered alloy structure as a union of four monoatomic simple cubic lattices, two of which are occupied by A atoms, and the other two by B atoms. This approach allows calculating the sublimation energy required for crystal evaporation. The first eight coordination spheres were taken into account in the work. The paper shows an algorithm for determining all possible geometrically different representations of the L10 superstructure with the same sublimation energy, gives an expression for finding the planes of occurrence of all possible conservative antiphase boundaries. The study identified that the conservative and nonconservative antiphase boundaries, as well as conservative and nonconservative boundaries of C-domains are observed in the binary ordered alloys of the L10 superstructure based on the fcc lattice. The algorithms described in this work make it possible to carry out a crystal-geometric analysis of planar defects in both binary and multicomponent ordered alloys with various superstructures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信