{"title":"演示摘要:雷达巡航控制系统的多模式调度","authors":"Masud Ahmed, Honglei Chen, N. Fisher","doi":"10.1109/RTAS.2015.7108459","DOIUrl":null,"url":null,"abstract":"The interaction of a cyber-physical system (CPS) may impose additional constraints upon cyber aspects of the system. For instance, sensing and actuation often require non-preemption to ensure “accuracy” in data acquisition (e.g., radar sensors in automotive a cruise control system). Furthermore, CPS may require that a system adapts to changing environment which requires support for multiple operating modes. A multimode CPS may also enable resource-efficient solution by providing shared processing platforms to subsystems. Recent development [1] of multi-modal fixed-priority schedulability with non-preemption can facilitate multi-modal CPS-based design. In this demo, we present the benefits of such design choices by devloping a simple automotive adaptive cruise control (ACC) system using System objectsTM and Phased Array System ToolboxTM, which provides state-of-the-art tools for radar simulation. The ACC application composes tasks for radar transmission, reception, and controller upon a single processing platform. We consider radar transmission and signal receiving tasks to have non-preemptible execution regions.","PeriodicalId":320300,"journal":{"name":"21st IEEE Real-Time and Embedded Technology and Applications Symposium","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demo abstract: Multi-modal scheduling of radar-based cruise control system\",\"authors\":\"Masud Ahmed, Honglei Chen, N. Fisher\",\"doi\":\"10.1109/RTAS.2015.7108459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interaction of a cyber-physical system (CPS) may impose additional constraints upon cyber aspects of the system. For instance, sensing and actuation often require non-preemption to ensure “accuracy” in data acquisition (e.g., radar sensors in automotive a cruise control system). Furthermore, CPS may require that a system adapts to changing environment which requires support for multiple operating modes. A multimode CPS may also enable resource-efficient solution by providing shared processing platforms to subsystems. Recent development [1] of multi-modal fixed-priority schedulability with non-preemption can facilitate multi-modal CPS-based design. In this demo, we present the benefits of such design choices by devloping a simple automotive adaptive cruise control (ACC) system using System objectsTM and Phased Array System ToolboxTM, which provides state-of-the-art tools for radar simulation. The ACC application composes tasks for radar transmission, reception, and controller upon a single processing platform. We consider radar transmission and signal receiving tasks to have non-preemptible execution regions.\",\"PeriodicalId\":320300,\"journal\":{\"name\":\"21st IEEE Real-Time and Embedded Technology and Applications Symposium\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st IEEE Real-Time and Embedded Technology and Applications Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTAS.2015.7108459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st IEEE Real-Time and Embedded Technology and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTAS.2015.7108459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Demo abstract: Multi-modal scheduling of radar-based cruise control system
The interaction of a cyber-physical system (CPS) may impose additional constraints upon cyber aspects of the system. For instance, sensing and actuation often require non-preemption to ensure “accuracy” in data acquisition (e.g., radar sensors in automotive a cruise control system). Furthermore, CPS may require that a system adapts to changing environment which requires support for multiple operating modes. A multimode CPS may also enable resource-efficient solution by providing shared processing platforms to subsystems. Recent development [1] of multi-modal fixed-priority schedulability with non-preemption can facilitate multi-modal CPS-based design. In this demo, we present the benefits of such design choices by devloping a simple automotive adaptive cruise control (ACC) system using System objectsTM and Phased Array System ToolboxTM, which provides state-of-the-art tools for radar simulation. The ACC application composes tasks for radar transmission, reception, and controller upon a single processing platform. We consider radar transmission and signal receiving tasks to have non-preemptible execution regions.