Yunseon Shin, Injung Kim, Juhyun Seo, Minyoung Lee
{"title":"SoC环境下基于深度学习的TIDL NPU道路图像识别技术","authors":"Yunseon Shin, Injung Kim, Juhyun Seo, Minyoung Lee","doi":"10.30693/smj.2022.11.11.25","DOIUrl":null,"url":null,"abstract":"Deep learning-based image processing is essential for autonomous vehicles. To process road images in real-time in a System-on-Chip (SoC) environment, we need to execute deep learning models on a NPU (Neural Procesing Units) specialized for deep learning operations. In this study, we imported seven open-source image processing deep learning models, that were developed on GPU servers, to Texas Instrument Deep Learning (TIDL) NPU environment. We confirmed that the models imported in this study operate normally in the SoC virtual environment through performance evaluation and visualization. This paper introduces the problems that occurred during the migration process due to the limitations of NPU environment and how to solve them, and thereby, presents a reference case worth referring to for developers and researchers who want to port deep learning models to SoC environments.","PeriodicalId":249252,"journal":{"name":"Korean Institute of Smart Media","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Road Image Recognition Technology based on Deep Learning Using TIDL NPU in SoC Enviroment\",\"authors\":\"Yunseon Shin, Injung Kim, Juhyun Seo, Minyoung Lee\",\"doi\":\"10.30693/smj.2022.11.11.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning-based image processing is essential for autonomous vehicles. To process road images in real-time in a System-on-Chip (SoC) environment, we need to execute deep learning models on a NPU (Neural Procesing Units) specialized for deep learning operations. In this study, we imported seven open-source image processing deep learning models, that were developed on GPU servers, to Texas Instrument Deep Learning (TIDL) NPU environment. We confirmed that the models imported in this study operate normally in the SoC virtual environment through performance evaluation and visualization. This paper introduces the problems that occurred during the migration process due to the limitations of NPU environment and how to solve them, and thereby, presents a reference case worth referring to for developers and researchers who want to port deep learning models to SoC environments.\",\"PeriodicalId\":249252,\"journal\":{\"name\":\"Korean Institute of Smart Media\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Institute of Smart Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30693/smj.2022.11.11.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Institute of Smart Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30693/smj.2022.11.11.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Road Image Recognition Technology based on Deep Learning Using TIDL NPU in SoC Enviroment
Deep learning-based image processing is essential for autonomous vehicles. To process road images in real-time in a System-on-Chip (SoC) environment, we need to execute deep learning models on a NPU (Neural Procesing Units) specialized for deep learning operations. In this study, we imported seven open-source image processing deep learning models, that were developed on GPU servers, to Texas Instrument Deep Learning (TIDL) NPU environment. We confirmed that the models imported in this study operate normally in the SoC virtual environment through performance evaluation and visualization. This paper introduces the problems that occurred during the migration process due to the limitations of NPU environment and how to solve them, and thereby, presents a reference case worth referring to for developers and researchers who want to port deep learning models to SoC environments.