基于形状细化的遥感图像分割

G. Gallo, Giorgio Grasso, Salvatore Nicotra, A. Pulvirenti
{"title":"基于形状细化的遥感图像分割","authors":"G. Gallo, Giorgio Grasso, Salvatore Nicotra, A. Pulvirenti","doi":"10.1109/ICIAP.2001.956998","DOIUrl":null,"url":null,"abstract":"A novel approach to the automatic classification of remotely sensed images is proposed. This approach is based on a three-phase procedure: first pixels which belong to the areas of interest with large likelihood are selected as seeds; second the seeds are refined into connected shapes using two well-known image processing techniques; third the results of the shape refinement algorithms are merged together. The initial seed extraction is performed using a simple thresholding strategy applied to NDVI/sub 4-3/ index. Subsequently shape refinement through seeded region growing and watershed decomposition is applied; finally a merging procedure is applied to build likelihood maps. Experimental results are presented to analyze the correctness and robustness of the method in recognizing vegetation areas around Mount Etna.","PeriodicalId":365627,"journal":{"name":"Proceedings 11th International Conference on Image Analysis and Processing","volume":"560 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Remote sensed images segmentation through shape refinement\",\"authors\":\"G. Gallo, Giorgio Grasso, Salvatore Nicotra, A. Pulvirenti\",\"doi\":\"10.1109/ICIAP.2001.956998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel approach to the automatic classification of remotely sensed images is proposed. This approach is based on a three-phase procedure: first pixels which belong to the areas of interest with large likelihood are selected as seeds; second the seeds are refined into connected shapes using two well-known image processing techniques; third the results of the shape refinement algorithms are merged together. The initial seed extraction is performed using a simple thresholding strategy applied to NDVI/sub 4-3/ index. Subsequently shape refinement through seeded region growing and watershed decomposition is applied; finally a merging procedure is applied to build likelihood maps. Experimental results are presented to analyze the correctness and robustness of the method in recognizing vegetation areas around Mount Etna.\",\"PeriodicalId\":365627,\"journal\":{\"name\":\"Proceedings 11th International Conference on Image Analysis and Processing\",\"volume\":\"560 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Conference on Image Analysis and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2001.956998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2001.956998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种新的遥感图像自动分类方法。该方法基于一个三个阶段的过程:首先,选择可能性较大的感兴趣区域的像素作为种子;其次,使用两种著名的图像处理技术将种子精炼成连接的形状;第三,对形状优化算法的结果进行合并。初始种子提取使用应用于NDVI/sub 4-3/ index的简单阈值策略进行。然后通过种子区生长和分水岭分解进行形状细化;最后,采用合并方法构建似然图。实验结果验证了该方法识别埃特纳火山周围植被区域的正确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remote sensed images segmentation through shape refinement
A novel approach to the automatic classification of remotely sensed images is proposed. This approach is based on a three-phase procedure: first pixels which belong to the areas of interest with large likelihood are selected as seeds; second the seeds are refined into connected shapes using two well-known image processing techniques; third the results of the shape refinement algorithms are merged together. The initial seed extraction is performed using a simple thresholding strategy applied to NDVI/sub 4-3/ index. Subsequently shape refinement through seeded region growing and watershed decomposition is applied; finally a merging procedure is applied to build likelihood maps. Experimental results are presented to analyze the correctness and robustness of the method in recognizing vegetation areas around Mount Etna.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信