基于RNN BiLSTM-CRF改进NER的资本化特征和学习率

Warto, Muljono, Purwanto, E. Noersasongko
{"title":"基于RNN BiLSTM-CRF改进NER的资本化特征和学习率","authors":"Warto, Muljono, Purwanto, E. Noersasongko","doi":"10.1109/CyberneticsCom55287.2022.9865660","DOIUrl":null,"url":null,"abstract":"Entity extraction in the natural language processing research field is still a widely researched topic. It can be a data source for the next NLP stage, such as text summarization, sentiment analysis, chatbot, machine translation, information retrieval, opinion mining, speech recognition, etc. Named Entity Recognition (NER) is the task of detecting named entities on the corpus. The detection process of entities can use various features, one of which is capital letters. Capital letters that appear at the beginning of a sentence indicate the name of a person, place, organization, geolocation, etc. The experiment uses the deep learning approach with Recurrent Neural Network Bidirectional Long Short Term Conditional Random Field (RNN-BiLSTM-CRF). Our comparing three optimization algorithms: Stochastic Gradient Descent (SGD), Adaptive Moment Estimation (Adam), and Adadelta, with the CoNLL2003 dataset. The experiment results using capital letter features showed an increase in the value of F1-Score by 2.9 higher compared to test results that did not use capital letter features. The highest F1-score score was 92.82 in testing using Adam's algorithm, with a 0.001 learning rate.","PeriodicalId":178279,"journal":{"name":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Capitalization Feature and Learning Rate for Improving NER Based on RNN BiLSTM-CRF\",\"authors\":\"Warto, Muljono, Purwanto, E. Noersasongko\",\"doi\":\"10.1109/CyberneticsCom55287.2022.9865660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Entity extraction in the natural language processing research field is still a widely researched topic. It can be a data source for the next NLP stage, such as text summarization, sentiment analysis, chatbot, machine translation, information retrieval, opinion mining, speech recognition, etc. Named Entity Recognition (NER) is the task of detecting named entities on the corpus. The detection process of entities can use various features, one of which is capital letters. Capital letters that appear at the beginning of a sentence indicate the name of a person, place, organization, geolocation, etc. The experiment uses the deep learning approach with Recurrent Neural Network Bidirectional Long Short Term Conditional Random Field (RNN-BiLSTM-CRF). Our comparing three optimization algorithms: Stochastic Gradient Descent (SGD), Adaptive Moment Estimation (Adam), and Adadelta, with the CoNLL2003 dataset. The experiment results using capital letter features showed an increase in the value of F1-Score by 2.9 higher compared to test results that did not use capital letter features. The highest F1-score score was 92.82 in testing using Adam's algorithm, with a 0.001 learning rate.\",\"PeriodicalId\":178279,\"journal\":{\"name\":\"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CyberneticsCom55287.2022.9865660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberneticsCom55287.2022.9865660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

实体抽取在自然语言处理研究领域仍然是一个被广泛研究的课题。它可以成为下一个NLP阶段的数据源,如文本摘要、情感分析、聊天机器人、机器翻译、信息检索、意见挖掘、语音识别等。命名实体识别(NER)是检测语料库上的命名实体的任务。实体的检测过程可以使用各种特征,其中一个特征就是大写字母。出现在句子开头的大写字母表示人名、地点、机构、地理位置等。实验采用深度学习方法,结合递归神经网络双向长短期条件随机场(RNN-BiLSTM-CRF)。我们用CoNLL2003数据集比较了三种优化算法:随机梯度下降(SGD)、自适应矩估计(Adam)和Adadelta。使用大写字母特征的实验结果显示,F1-Score值比不使用大写字母特征的测试结果高2.9。在Adam算法测试中,f1得分最高为92.82,学习率为0.001。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capitalization Feature and Learning Rate for Improving NER Based on RNN BiLSTM-CRF
Entity extraction in the natural language processing research field is still a widely researched topic. It can be a data source for the next NLP stage, such as text summarization, sentiment analysis, chatbot, machine translation, information retrieval, opinion mining, speech recognition, etc. Named Entity Recognition (NER) is the task of detecting named entities on the corpus. The detection process of entities can use various features, one of which is capital letters. Capital letters that appear at the beginning of a sentence indicate the name of a person, place, organization, geolocation, etc. The experiment uses the deep learning approach with Recurrent Neural Network Bidirectional Long Short Term Conditional Random Field (RNN-BiLSTM-CRF). Our comparing three optimization algorithms: Stochastic Gradient Descent (SGD), Adaptive Moment Estimation (Adam), and Adadelta, with the CoNLL2003 dataset. The experiment results using capital letter features showed an increase in the value of F1-Score by 2.9 higher compared to test results that did not use capital letter features. The highest F1-score score was 92.82 in testing using Adam's algorithm, with a 0.001 learning rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信