分布式模糊神经状态空间预测控制

Y. Todorov, M. Terziyska, Luybka Doukovska
{"title":"分布式模糊神经状态空间预测控制","authors":"Y. Todorov, M. Terziyska, Luybka Doukovska","doi":"10.1109/PC.2015.7169934","DOIUrl":null,"url":null,"abstract":"This paper describes the development of nonlinear state-space predictive controller based on distributed fuzzy-neural model. The presented approach assumes a state-space representation in order to obtain more compact form of the model, without statement of a great number of parameters needed to represent nonlinear relations. To increase the flexibility of the network, a set of fuzzy inferences is used to estimate the current system states, as well as to construct a simple predictor needed to update the future system behavior along the defined horizons. At each sampling period an optimization task performing Quadratic Programming minimization assuming the imposed constraints on the system parameters is solved. The performance of the proposed controller is assessed by simulation experiments in modeling and control of nonlinear systems with complicated dynamics.","PeriodicalId":173529,"journal":{"name":"2015 20th International Conference on Process Control (PC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Distributed fuzzy-neural state-space predictive control\",\"authors\":\"Y. Todorov, M. Terziyska, Luybka Doukovska\",\"doi\":\"10.1109/PC.2015.7169934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the development of nonlinear state-space predictive controller based on distributed fuzzy-neural model. The presented approach assumes a state-space representation in order to obtain more compact form of the model, without statement of a great number of parameters needed to represent nonlinear relations. To increase the flexibility of the network, a set of fuzzy inferences is used to estimate the current system states, as well as to construct a simple predictor needed to update the future system behavior along the defined horizons. At each sampling period an optimization task performing Quadratic Programming minimization assuming the imposed constraints on the system parameters is solved. The performance of the proposed controller is assessed by simulation experiments in modeling and control of nonlinear systems with complicated dynamics.\",\"PeriodicalId\":173529,\"journal\":{\"name\":\"2015 20th International Conference on Process Control (PC)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 20th International Conference on Process Control (PC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PC.2015.7169934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 20th International Conference on Process Control (PC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PC.2015.7169934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了基于分布式模糊神经网络模型的非线性状态空间预测控制器的发展。该方法采用状态空间表示,以获得更紧凑的模型形式,避免了表示非线性关系所需的大量参数的陈述。为了增加网络的灵活性,使用一组模糊推理来估计当前系统状态,以及构建一个简单的预测器,用于沿着定义的视界更新未来系统的行为。在每个采样周期,求解一个二次规划最小化的优化任务,该任务假定对系统参数施加约束。通过仿真实验验证了该控制器在复杂动力学非线性系统建模与控制中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed fuzzy-neural state-space predictive control
This paper describes the development of nonlinear state-space predictive controller based on distributed fuzzy-neural model. The presented approach assumes a state-space representation in order to obtain more compact form of the model, without statement of a great number of parameters needed to represent nonlinear relations. To increase the flexibility of the network, a set of fuzzy inferences is used to estimate the current system states, as well as to construct a simple predictor needed to update the future system behavior along the defined horizons. At each sampling period an optimization task performing Quadratic Programming minimization assuming the imposed constraints on the system parameters is solved. The performance of the proposed controller is assessed by simulation experiments in modeling and control of nonlinear systems with complicated dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信