A. El-Fiky, M. Shouman, S. Hamada, A. El-Sayed, M. E. Karar
{"title":"利用胸部x光识别肺部疾病的多标签迁移学习","authors":"A. El-Fiky, M. Shouman, S. Hamada, A. El-Sayed, M. E. Karar","doi":"10.1109/ICEEM52022.2021.9480622","DOIUrl":null,"url":null,"abstract":"Chest radiography presents one of the main medical imaging modalities for diagnosing lung diseases. To assist radiologists during interventional procedures, this paper aims at proposing a transfer learning-based classifier to automatically identify 14 different thoracic diseases in Chest X-ray (CXR) images. The proposed method is relied on deep residual neural networks with 50 layers (ResNet-50) to accomplish the diagnostic task of many chest diseases. In this study, a public dataset of 112,120 frontal radiograph images for Chest X-ray has been used for validating the proposed deep learning classifier. It achieved the best performance of multi-label classification of normal and 14 different lung diseases with an average area under curve (AUC) of 0.911 and F1-score of 0.66. This study demonstrated that the proposed ResNet-50 classifier as a transfer learning model outperforms other relevant methods in the previous studies for automatic multi-label classification of chest X-rays.","PeriodicalId":352371,"journal":{"name":"2021 International Conference on Electronic Engineering (ICEEM)","volume":"58 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-Label Transfer Learning for Identifying Lung Diseases using Chest X-Rays\",\"authors\":\"A. El-Fiky, M. Shouman, S. Hamada, A. El-Sayed, M. E. Karar\",\"doi\":\"10.1109/ICEEM52022.2021.9480622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chest radiography presents one of the main medical imaging modalities for diagnosing lung diseases. To assist radiologists during interventional procedures, this paper aims at proposing a transfer learning-based classifier to automatically identify 14 different thoracic diseases in Chest X-ray (CXR) images. The proposed method is relied on deep residual neural networks with 50 layers (ResNet-50) to accomplish the diagnostic task of many chest diseases. In this study, a public dataset of 112,120 frontal radiograph images for Chest X-ray has been used for validating the proposed deep learning classifier. It achieved the best performance of multi-label classification of normal and 14 different lung diseases with an average area under curve (AUC) of 0.911 and F1-score of 0.66. This study demonstrated that the proposed ResNet-50 classifier as a transfer learning model outperforms other relevant methods in the previous studies for automatic multi-label classification of chest X-rays.\",\"PeriodicalId\":352371,\"journal\":{\"name\":\"2021 International Conference on Electronic Engineering (ICEEM)\",\"volume\":\"58 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Electronic Engineering (ICEEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEM52022.2021.9480622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electronic Engineering (ICEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEM52022.2021.9480622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Label Transfer Learning for Identifying Lung Diseases using Chest X-Rays
Chest radiography presents one of the main medical imaging modalities for diagnosing lung diseases. To assist radiologists during interventional procedures, this paper aims at proposing a transfer learning-based classifier to automatically identify 14 different thoracic diseases in Chest X-ray (CXR) images. The proposed method is relied on deep residual neural networks with 50 layers (ResNet-50) to accomplish the diagnostic task of many chest diseases. In this study, a public dataset of 112,120 frontal radiograph images for Chest X-ray has been used for validating the proposed deep learning classifier. It achieved the best performance of multi-label classification of normal and 14 different lung diseases with an average area under curve (AUC) of 0.911 and F1-score of 0.66. This study demonstrated that the proposed ResNet-50 classifier as a transfer learning model outperforms other relevant methods in the previous studies for automatic multi-label classification of chest X-rays.