利用胸部x光识别肺部疾病的多标签迁移学习

A. El-Fiky, M. Shouman, S. Hamada, A. El-Sayed, M. E. Karar
{"title":"利用胸部x光识别肺部疾病的多标签迁移学习","authors":"A. El-Fiky, M. Shouman, S. Hamada, A. El-Sayed, M. E. Karar","doi":"10.1109/ICEEM52022.2021.9480622","DOIUrl":null,"url":null,"abstract":"Chest radiography presents one of the main medical imaging modalities for diagnosing lung diseases. To assist radiologists during interventional procedures, this paper aims at proposing a transfer learning-based classifier to automatically identify 14 different thoracic diseases in Chest X-ray (CXR) images. The proposed method is relied on deep residual neural networks with 50 layers (ResNet-50) to accomplish the diagnostic task of many chest diseases. In this study, a public dataset of 112,120 frontal radiograph images for Chest X-ray has been used for validating the proposed deep learning classifier. It achieved the best performance of multi-label classification of normal and 14 different lung diseases with an average area under curve (AUC) of 0.911 and F1-score of 0.66. This study demonstrated that the proposed ResNet-50 classifier as a transfer learning model outperforms other relevant methods in the previous studies for automatic multi-label classification of chest X-rays.","PeriodicalId":352371,"journal":{"name":"2021 International Conference on Electronic Engineering (ICEEM)","volume":"58 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-Label Transfer Learning for Identifying Lung Diseases using Chest X-Rays\",\"authors\":\"A. El-Fiky, M. Shouman, S. Hamada, A. El-Sayed, M. E. Karar\",\"doi\":\"10.1109/ICEEM52022.2021.9480622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chest radiography presents one of the main medical imaging modalities for diagnosing lung diseases. To assist radiologists during interventional procedures, this paper aims at proposing a transfer learning-based classifier to automatically identify 14 different thoracic diseases in Chest X-ray (CXR) images. The proposed method is relied on deep residual neural networks with 50 layers (ResNet-50) to accomplish the diagnostic task of many chest diseases. In this study, a public dataset of 112,120 frontal radiograph images for Chest X-ray has been used for validating the proposed deep learning classifier. It achieved the best performance of multi-label classification of normal and 14 different lung diseases with an average area under curve (AUC) of 0.911 and F1-score of 0.66. This study demonstrated that the proposed ResNet-50 classifier as a transfer learning model outperforms other relevant methods in the previous studies for automatic multi-label classification of chest X-rays.\",\"PeriodicalId\":352371,\"journal\":{\"name\":\"2021 International Conference on Electronic Engineering (ICEEM)\",\"volume\":\"58 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Electronic Engineering (ICEEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEM52022.2021.9480622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electronic Engineering (ICEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEM52022.2021.9480622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

胸部x线摄影是诊断肺部疾病的主要医学成像方式之一。为了帮助放射科医生在介入治疗过程中,本文旨在提出一种基于迁移学习的分类器来自动识别胸部x线(CXR)图像中的14种不同的胸部疾病。该方法基于50层深度残差神经网络(ResNet-50)来完成多种胸部疾病的诊断任务。在这项研究中,一个包含112,120张胸部x射线正面x线片图像的公共数据集被用于验证所提出的深度学习分类器。对正常及14种不同肺部疾病进行多标签分类,平均曲线下面积(AUC)为0.911,f1评分为0.66,表现最佳。本研究表明,所提出的ResNet-50分类器作为一种迁移学习模型,在胸部x射线自动多标签分类方面优于以往研究中的其他相关方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Label Transfer Learning for Identifying Lung Diseases using Chest X-Rays
Chest radiography presents one of the main medical imaging modalities for diagnosing lung diseases. To assist radiologists during interventional procedures, this paper aims at proposing a transfer learning-based classifier to automatically identify 14 different thoracic diseases in Chest X-ray (CXR) images. The proposed method is relied on deep residual neural networks with 50 layers (ResNet-50) to accomplish the diagnostic task of many chest diseases. In this study, a public dataset of 112,120 frontal radiograph images for Chest X-ray has been used for validating the proposed deep learning classifier. It achieved the best performance of multi-label classification of normal and 14 different lung diseases with an average area under curve (AUC) of 0.911 and F1-score of 0.66. This study demonstrated that the proposed ResNet-50 classifier as a transfer learning model outperforms other relevant methods in the previous studies for automatic multi-label classification of chest X-rays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信