使用缩略图亲和性对JPEG文件进行碎片点检测

Brandon Birmingham, R. Farrugia, Mark Vella
{"title":"使用缩略图亲和性对JPEG文件进行碎片点检测","authors":"Brandon Birmingham, R. Farrugia, Mark Vella","doi":"10.1109/EUROCON.2017.8011068","DOIUrl":null,"url":null,"abstract":"File carving tools carry out file recovery whenever the file-system meta-data is not available, which makes them a valuable addition to the cyber crime investigator's toolkit. Existing file carvers either cannot handle fragmented files or require a probabilistic model derived using a number of training images. This training data may not always be feasible to aggregate or its sheer size could undermine practicality. Similar to existing techniques, our method exploits both the JPEG syntax and semantic-based analysis steps in order to distinguish the correct fragments required for recovering images. The thumbnail affinity-based semantic analysis constitutes the novel aspect of this approach. Comparative evaluation using three widely used benchmark test sets show that our carver compares with the state-of-the-art commercial tool that requires an a-priori model while beating a number of popular forensic tools. This outcome demonstrates the successful replacement of the probabilistic model with thumbnail affinity, rendering this technique the right complement for existing carvers in situations where thumbnail information is readily available.","PeriodicalId":114100,"journal":{"name":"IEEE EUROCON 2017 -17th International Conference on Smart Technologies","volume":"276 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Using thumbnail affinity for fragmentation point detection of JPEG files\",\"authors\":\"Brandon Birmingham, R. Farrugia, Mark Vella\",\"doi\":\"10.1109/EUROCON.2017.8011068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"File carving tools carry out file recovery whenever the file-system meta-data is not available, which makes them a valuable addition to the cyber crime investigator's toolkit. Existing file carvers either cannot handle fragmented files or require a probabilistic model derived using a number of training images. This training data may not always be feasible to aggregate or its sheer size could undermine practicality. Similar to existing techniques, our method exploits both the JPEG syntax and semantic-based analysis steps in order to distinguish the correct fragments required for recovering images. The thumbnail affinity-based semantic analysis constitutes the novel aspect of this approach. Comparative evaluation using three widely used benchmark test sets show that our carver compares with the state-of-the-art commercial tool that requires an a-priori model while beating a number of popular forensic tools. This outcome demonstrates the successful replacement of the probabilistic model with thumbnail affinity, rendering this technique the right complement for existing carvers in situations where thumbnail information is readily available.\",\"PeriodicalId\":114100,\"journal\":{\"name\":\"IEEE EUROCON 2017 -17th International Conference on Smart Technologies\",\"volume\":\"276 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE EUROCON 2017 -17th International Conference on Smart Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROCON.2017.8011068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2017 -17th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2017.8011068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

文件雕刻工具在文件系统元数据不可用时执行文件恢复,这使它们成为网络犯罪调查人员工具包中有价值的补充。现有的文件分割器要么不能处理碎片文件,要么需要使用大量训练图像派生的概率模型。这些训练数据可能并不总是可以汇总,或者其庞大的规模可能会破坏实用性。与现有技术类似,我们的方法利用JPEG语法和基于语义的分析步骤来区分恢复图像所需的正确片段。基于缩略图亲和力的语义分析构成了该方法的新颖方面。使用三个广泛使用的基准测试集的比较评估表明,我们的雕刻器与最先进的商业工具相比,需要一个先验模型,同时击败了许多流行的法医工具。这个结果证明了用缩略图关联成功地替换了概率模型,在缩略图信息随时可用的情况下,这种技术是对现有雕刻器的正确补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using thumbnail affinity for fragmentation point detection of JPEG files
File carving tools carry out file recovery whenever the file-system meta-data is not available, which makes them a valuable addition to the cyber crime investigator's toolkit. Existing file carvers either cannot handle fragmented files or require a probabilistic model derived using a number of training images. This training data may not always be feasible to aggregate or its sheer size could undermine practicality. Similar to existing techniques, our method exploits both the JPEG syntax and semantic-based analysis steps in order to distinguish the correct fragments required for recovering images. The thumbnail affinity-based semantic analysis constitutes the novel aspect of this approach. Comparative evaluation using three widely used benchmark test sets show that our carver compares with the state-of-the-art commercial tool that requires an a-priori model while beating a number of popular forensic tools. This outcome demonstrates the successful replacement of the probabilistic model with thumbnail affinity, rendering this technique the right complement for existing carvers in situations where thumbnail information is readily available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信