{"title":"EdgeCloudSim的改进:一种高效的离散事件方法","authors":"Raphael Freymann, Junjie Shi, Jian-Jia Chen, Kuan-Hsun Chen","doi":"10.1109/FMEC54266.2021.9732572","DOIUrl":null,"url":null,"abstract":"Due to the growing popularity of the Internet of Things, edge computing concept has been widely studied to relieve the load on the original cloud and networks while improving the service quality for end-users. To simulate such a complex environment involving edge and cloud computing, EdgeCloudSim has been widely adopted. However, it suffers from certain efficiency and scalability issues due to the ignorance of the deficiency in the originally adopted data structures and maintenance strategies. Specifically, it generates all events at beginning of the simulation and stores unnecessary historical information, both result in unnecessarily high complexity for search operations. In this work, by fixing the mismatches on the concept of discrete-event simulation, we propose enhancement of EdgeCloudSim which improves not only the runtime efficiency of simulation, but also the flexibility and scalability. Through extensive experiments with statistical methods, we show that the enhancement does not affect the expressiveness of simulations while obtaining 2 orders of magnitude speedup, especially when the device count is large.","PeriodicalId":217996,"journal":{"name":"2021 Sixth International Conference on Fog and Mobile Edge Computing (FMEC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Renovation of EdgeCloudSim: An Efficient Discrete-Event Approach\",\"authors\":\"Raphael Freymann, Junjie Shi, Jian-Jia Chen, Kuan-Hsun Chen\",\"doi\":\"10.1109/FMEC54266.2021.9732572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the growing popularity of the Internet of Things, edge computing concept has been widely studied to relieve the load on the original cloud and networks while improving the service quality for end-users. To simulate such a complex environment involving edge and cloud computing, EdgeCloudSim has been widely adopted. However, it suffers from certain efficiency and scalability issues due to the ignorance of the deficiency in the originally adopted data structures and maintenance strategies. Specifically, it generates all events at beginning of the simulation and stores unnecessary historical information, both result in unnecessarily high complexity for search operations. In this work, by fixing the mismatches on the concept of discrete-event simulation, we propose enhancement of EdgeCloudSim which improves not only the runtime efficiency of simulation, but also the flexibility and scalability. Through extensive experiments with statistical methods, we show that the enhancement does not affect the expressiveness of simulations while obtaining 2 orders of magnitude speedup, especially when the device count is large.\",\"PeriodicalId\":217996,\"journal\":{\"name\":\"2021 Sixth International Conference on Fog and Mobile Edge Computing (FMEC)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Sixth International Conference on Fog and Mobile Edge Computing (FMEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FMEC54266.2021.9732572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Sixth International Conference on Fog and Mobile Edge Computing (FMEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMEC54266.2021.9732572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Renovation of EdgeCloudSim: An Efficient Discrete-Event Approach
Due to the growing popularity of the Internet of Things, edge computing concept has been widely studied to relieve the load on the original cloud and networks while improving the service quality for end-users. To simulate such a complex environment involving edge and cloud computing, EdgeCloudSim has been widely adopted. However, it suffers from certain efficiency and scalability issues due to the ignorance of the deficiency in the originally adopted data structures and maintenance strategies. Specifically, it generates all events at beginning of the simulation and stores unnecessary historical information, both result in unnecessarily high complexity for search operations. In this work, by fixing the mismatches on the concept of discrete-event simulation, we propose enhancement of EdgeCloudSim which improves not only the runtime efficiency of simulation, but also the flexibility and scalability. Through extensive experiments with statistical methods, we show that the enhancement does not affect the expressiveness of simulations while obtaining 2 orders of magnitude speedup, especially when the device count is large.