反射分数布朗运动的离散误差

Patricia C. McGlaughlin, Alexandra Chronopoulou
{"title":"反射分数布朗运动的离散误差","authors":"Patricia C. McGlaughlin, Alexandra Chronopoulou","doi":"10.1109/WSC.2016.7822095","DOIUrl":null,"url":null,"abstract":"The long-range dependence and self-similarity of fractional Brownian motion make it an attractive model for traffic in many data transfer networks. Reflected fractional Brownian Motion appears in the storage process of such a network. In this paper, we focus on the simulation of reflected fractional Brownian motion using a straightforward discretization scheme and we show that its strong error is of order hH, where h is the discretization step and H ∈ (0,1) is the Hurst index.","PeriodicalId":367269,"journal":{"name":"2016 Winter Simulation Conference (WSC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discretization error of reflected fractional Brownian motion\",\"authors\":\"Patricia C. McGlaughlin, Alexandra Chronopoulou\",\"doi\":\"10.1109/WSC.2016.7822095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The long-range dependence and self-similarity of fractional Brownian motion make it an attractive model for traffic in many data transfer networks. Reflected fractional Brownian Motion appears in the storage process of such a network. In this paper, we focus on the simulation of reflected fractional Brownian motion using a straightforward discretization scheme and we show that its strong error is of order hH, where h is the discretization step and H ∈ (0,1) is the Hurst index.\",\"PeriodicalId\":367269,\"journal\":{\"name\":\"2016 Winter Simulation Conference (WSC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2016.7822095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2016.7822095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分数阶布朗运动的远程依赖性和自相似性使其成为许多数据传输网络中具有吸引力的流量模型。在这种网络的存储过程中出现了反射分数布朗运动。本文采用一种简单的离散化方案对反射分数阶布朗运动进行模拟,并证明其强误差为hH阶,其中h为离散化阶跃,h∈(0,1)为Hurst指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discretization error of reflected fractional Brownian motion
The long-range dependence and self-similarity of fractional Brownian motion make it an attractive model for traffic in many data transfer networks. Reflected fractional Brownian Motion appears in the storage process of such a network. In this paper, we focus on the simulation of reflected fractional Brownian motion using a straightforward discretization scheme and we show that its strong error is of order hH, where h is the discretization step and H ∈ (0,1) is the Hurst index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信