通过基于ga的双聚类实现可解释的数据粒化

Corrado Mencar, A. Consiglio, A. Fanelli
{"title":"通过基于ga的双聚类实现可解释的数据粒化","authors":"Corrado Mencar, A. Consiglio, A. Fanelli","doi":"10.1109/FUZZY.2007.4295536","DOIUrl":null,"url":null,"abstract":"In this paper we present an approach for extracting interpretable information granules for classification. The approach, called DCγ (double clustering with genetic algorithms) is based on two clustering steps. The first step uses LVQ1 to identify cluster prototypes in the multidimensional data space so as to represent hidden relationships among data. In the second step a genetic algorithm is applied to the projections of these prototypes with the objective of finding a minimal number of fuzzy information granules that verify some interpretability constraints. The key feature of DCγ is the efficiency of the minimization process carried out in the second step. Experimental results on two medical diagnosis problems show the effectiveness of the proposed approach in terms of accuracy, interpretability and efficiency.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"DCγ : Interpretable Granulation of Data through GA-based Double Clustering\",\"authors\":\"Corrado Mencar, A. Consiglio, A. Fanelli\",\"doi\":\"10.1109/FUZZY.2007.4295536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an approach for extracting interpretable information granules for classification. The approach, called DCγ (double clustering with genetic algorithms) is based on two clustering steps. The first step uses LVQ1 to identify cluster prototypes in the multidimensional data space so as to represent hidden relationships among data. In the second step a genetic algorithm is applied to the projections of these prototypes with the objective of finding a minimal number of fuzzy information granules that verify some interpretability constraints. The key feature of DCγ is the efficiency of the minimization process carried out in the second step. Experimental results on two medical diagnosis problems show the effectiveness of the proposed approach in terms of accuracy, interpretability and efficiency.\",\"PeriodicalId\":236515,\"journal\":{\"name\":\"2007 IEEE International Fuzzy Systems Conference\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Fuzzy Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2007.4295536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种提取可解释信息颗粒用于分类的方法。这种被称为DCγ(遗传算法双重聚类)的方法基于两个聚类步骤。第一步使用LVQ1识别多维数据空间中的集群原型,以表示数据之间的隐藏关系。第二步,将遗传算法应用于这些原型的投影,目的是找到最小数量的模糊信息颗粒来验证一些可解释性约束。DCγ的关键特征是在第二步中进行的最小化过程的效率。在两个医学诊断问题上的实验结果表明,该方法在准确性、可解释性和效率方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DCγ : Interpretable Granulation of Data through GA-based Double Clustering
In this paper we present an approach for extracting interpretable information granules for classification. The approach, called DCγ (double clustering with genetic algorithms) is based on two clustering steps. The first step uses LVQ1 to identify cluster prototypes in the multidimensional data space so as to represent hidden relationships among data. In the second step a genetic algorithm is applied to the projections of these prototypes with the objective of finding a minimal number of fuzzy information granules that verify some interpretability constraints. The key feature of DCγ is the efficiency of the minimization process carried out in the second step. Experimental results on two medical diagnosis problems show the effectiveness of the proposed approach in terms of accuracy, interpretability and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信