分数阶病毒系统在非细胞溶解性免疫假设下的稳定性表征

M. Naim, Y. Sabbar, A. Zeb
{"title":"分数阶病毒系统在非细胞溶解性免疫假设下的稳定性表征","authors":"M. Naim, Y. Sabbar, A. Zeb","doi":"10.53391/mmnsa.2022.013","DOIUrl":null,"url":null,"abstract":"This article deals with a Caputo fractional-order viral model that incorporates the non-cytolytic immune hypothesis and the mechanism of viral replication inhibition. Firstly, we establish the existence, uniqueness, non-negativity, and boundedness of the solutions of the proposed viral model. Then, we point out that our model has the following three equilibrium points: equilibrium point without virus, equilibrium state without immune system, and equilibrium point activated by immunity with humoral feedback. By presenting two critical quantities, the asymptotic stability of all said steady points is examined. Finally, we examine the finesse of our results by highlighting the impact of fractional derivatives on the stability of the corresponding steady points.","PeriodicalId":210715,"journal":{"name":"Mathematical Modelling and Numerical Simulation with Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Stability characterization of a fractional-order viral system with the non-cytolytic immune assumption\",\"authors\":\"M. Naim, Y. Sabbar, A. Zeb\",\"doi\":\"10.53391/mmnsa.2022.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with a Caputo fractional-order viral model that incorporates the non-cytolytic immune hypothesis and the mechanism of viral replication inhibition. Firstly, we establish the existence, uniqueness, non-negativity, and boundedness of the solutions of the proposed viral model. Then, we point out that our model has the following three equilibrium points: equilibrium point without virus, equilibrium state without immune system, and equilibrium point activated by immunity with humoral feedback. By presenting two critical quantities, the asymptotic stability of all said steady points is examined. Finally, we examine the finesse of our results by highlighting the impact of fractional derivatives on the stability of the corresponding steady points.\",\"PeriodicalId\":210715,\"journal\":{\"name\":\"Mathematical Modelling and Numerical Simulation with Applications\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Numerical Simulation with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53391/mmnsa.2022.013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Numerical Simulation with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53391/mmnsa.2022.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文讨论了一个卡普托分数阶病毒模型,该模型结合了非细胞溶解免疫假说和病毒复制抑制机制。首先,我们建立了病毒模型解的存在唯一性、非负性和有界性。然后,我们指出我们的模型有以下三个平衡点:无病毒的平衡点、无免疫系统的平衡点和有体液反馈的免疫激活的平衡点。通过给出两个临界量,检验了所有稳态点的渐近稳定性。最后,我们通过强调分数阶导数对相应稳定点稳定性的影响来检查结果的巧妙性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability characterization of a fractional-order viral system with the non-cytolytic immune assumption
This article deals with a Caputo fractional-order viral model that incorporates the non-cytolytic immune hypothesis and the mechanism of viral replication inhibition. Firstly, we establish the existence, uniqueness, non-negativity, and boundedness of the solutions of the proposed viral model. Then, we point out that our model has the following three equilibrium points: equilibrium point without virus, equilibrium state without immune system, and equilibrium point activated by immunity with humoral feedback. By presenting two critical quantities, the asymptotic stability of all said steady points is examined. Finally, we examine the finesse of our results by highlighting the impact of fractional derivatives on the stability of the corresponding steady points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信