定常线性nabla分数系统的可控性和可观测性

F. Atici, Tilekbek Zhoroev
{"title":"定常线性nabla分数系统的可控性和可观测性","authors":"F. Atici, Tilekbek Zhoroev","doi":"10.7153/fdc-2020-10-02","DOIUrl":null,"url":null,"abstract":". In this paper, we study linear time-invariant nabla fractional discrete control systems. The nabla fractional difference operator is considered in the sense of Riemann-Liouville def-inition of the fractional derivative. We fi rst give necessary and suf fi cient rank conditions for controllability of the discrete fractional system via Gramian and controllability matrices. We then obtain rank conditions for observability of the discrete fractional system. We illustrate main results with some numerical examples. We close the paper by stating that the rank conditions for the time-invariant linear dynamic system on time scales, fractional system in continuous time, and fractional system in discrete time coincide.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controllability and observability of time-invariant linear nabla fractional systems\",\"authors\":\"F. Atici, Tilekbek Zhoroev\",\"doi\":\"10.7153/fdc-2020-10-02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we study linear time-invariant nabla fractional discrete control systems. The nabla fractional difference operator is considered in the sense of Riemann-Liouville def-inition of the fractional derivative. We fi rst give necessary and suf fi cient rank conditions for controllability of the discrete fractional system via Gramian and controllability matrices. We then obtain rank conditions for observability of the discrete fractional system. We illustrate main results with some numerical examples. We close the paper by stating that the rank conditions for the time-invariant linear dynamic system on time scales, fractional system in continuous time, and fractional system in discrete time coincide.\",\"PeriodicalId\":135809,\"journal\":{\"name\":\"Fractional Differential Calculus\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Differential Calculus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/fdc-2020-10-02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Differential Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/fdc-2020-10-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 本文研究线性定常纳布拉分数阶离散控制系统。从分数阶导数的Riemann-Liouville定义的意义上考虑了分数阶差分算子。首先利用格拉姆矩阵和可控性矩阵给出了离散分数阶系统可控性的充分必要秩条件。然后,我们得到了离散分数阶系统的可观察性的秩条件。我们用一些数值例子来说明主要结果。最后,给出了时间尺度上定常线性动力系统、连续时间分数系统和离散时间分数系统的秩条件重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controllability and observability of time-invariant linear nabla fractional systems
. In this paper, we study linear time-invariant nabla fractional discrete control systems. The nabla fractional difference operator is considered in the sense of Riemann-Liouville def-inition of the fractional derivative. We fi rst give necessary and suf fi cient rank conditions for controllability of the discrete fractional system via Gramian and controllability matrices. We then obtain rank conditions for observability of the discrete fractional system. We illustrate main results with some numerical examples. We close the paper by stating that the rank conditions for the time-invariant linear dynamic system on time scales, fractional system in continuous time, and fractional system in discrete time coincide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信