一类广义变核回归估计量

Sharada V. Bhat, Bhargavi Deshpande
{"title":"一类广义变核回归估计量","authors":"Sharada V. Bhat, Bhargavi Deshpande","doi":"10.12785/IJCTS/060205","DOIUrl":null,"url":null,"abstract":"Nadaraya-Watson (NW) estimator with fixed bandwidth and its adaptive forms with varying bandwidths are widely used kernel regression estimators in nonparametric regression. In this paper, we propose a generalized class of varying kernel regression estimators with its members based on various statistical measures of pilot density estimates. We study the performance of the members of this class in terms of mean integrated squared error (MISE).","PeriodicalId":130559,"journal":{"name":"International Journal of Computational & Theoretical Statistics","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generalized Class of Varying Kernel Regression Estimators\",\"authors\":\"Sharada V. Bhat, Bhargavi Deshpande\",\"doi\":\"10.12785/IJCTS/060205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nadaraya-Watson (NW) estimator with fixed bandwidth and its adaptive forms with varying bandwidths are widely used kernel regression estimators in nonparametric regression. In this paper, we propose a generalized class of varying kernel regression estimators with its members based on various statistical measures of pilot density estimates. We study the performance of the members of this class in terms of mean integrated squared error (MISE).\",\"PeriodicalId\":130559,\"journal\":{\"name\":\"International Journal of Computational & Theoretical Statistics\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational & Theoretical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12785/IJCTS/060205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational & Theoretical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12785/IJCTS/060205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

固定带宽Nadaraya-Watson (NW)估计量及其变带宽自适应形式是非参数回归中广泛使用的核回归估计量。在本文中,我们提出了一类广义的变核回归估计量,其成员基于导频密度估计的各种统计度量。我们用平均积分平方误差(MISE)来研究这类成员的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generalized Class of Varying Kernel Regression Estimators
Nadaraya-Watson (NW) estimator with fixed bandwidth and its adaptive forms with varying bandwidths are widely used kernel regression estimators in nonparametric regression. In this paper, we propose a generalized class of varying kernel regression estimators with its members based on various statistical measures of pilot density estimates. We study the performance of the members of this class in terms of mean integrated squared error (MISE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信