基于高斯过程的小波参数特征选择:从生理信号预测急性低血压发作

Franck Dernoncourt, K. Veeramachaneni, Una-May O’Reilly
{"title":"基于高斯过程的小波参数特征选择:从生理信号预测急性低血压发作","authors":"Franck Dernoncourt, K. Veeramachaneni, Una-May O’Reilly","doi":"10.1109/CBMS.2015.88","DOIUrl":null,"url":null,"abstract":"Physiological signals such as blood pressure might contain key information to predict a medical condition, but are challenging to mine. Wavelets possess the ability to unveil location-specific features within signals but there exists no principled method to choose the optimal scales and time shifts. We present a scalable, robust system to find the best wavelet parameters using Gaussian processes (GPs). We demonstrate our system by assessing wavelets as predictors for the occurrence of acute hypotensive episodes (AHEs) using over 1 billion blood pressure beats. We obtain an AUROC of 0.79 with wavelet features only, and the false positive rate when the true positive rate is fixed at 0.90 is reduced by 14% when the wavelet feature is used in conjunction with other statistical features. Furthermore, the use of GPs reduces the selection effort by a factor of 3 compared with a naive grid search.","PeriodicalId":164356,"journal":{"name":"2015 IEEE 28th International Symposium on Computer-Based Medical Systems","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Gaussian Process-Based Feature Selection for Wavelet Parameters: Predicting Acute Hypotensive Episodes from Physiological Signals\",\"authors\":\"Franck Dernoncourt, K. Veeramachaneni, Una-May O’Reilly\",\"doi\":\"10.1109/CBMS.2015.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physiological signals such as blood pressure might contain key information to predict a medical condition, but are challenging to mine. Wavelets possess the ability to unveil location-specific features within signals but there exists no principled method to choose the optimal scales and time shifts. We present a scalable, robust system to find the best wavelet parameters using Gaussian processes (GPs). We demonstrate our system by assessing wavelets as predictors for the occurrence of acute hypotensive episodes (AHEs) using over 1 billion blood pressure beats. We obtain an AUROC of 0.79 with wavelet features only, and the false positive rate when the true positive rate is fixed at 0.90 is reduced by 14% when the wavelet feature is used in conjunction with other statistical features. Furthermore, the use of GPs reduces the selection effort by a factor of 3 compared with a naive grid search.\",\"PeriodicalId\":164356,\"journal\":{\"name\":\"2015 IEEE 28th International Symposium on Computer-Based Medical Systems\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 28th International Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2015.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 28th International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2015.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

血压等生理信号可能包含预测医疗状况的关键信息,但很难挖掘。小波具有揭示信号中特定位置特征的能力,但没有原则的方法来选择最佳尺度和时移。我们提出了一个可扩展的,鲁棒的系统,以寻找最佳的小波参数高斯过程(GPs)。我们通过使用超过10亿次的血压跳动来评估小波作为急性低血压发作(ahs)发生的预测因子来证明我们的系统。仅使用小波特征时,我们获得了0.79的AUROC,当真阳性率固定为0.90时,当小波特征与其他统计特征结合使用时,假阳性率降低了14%。此外,与朴素的网格搜索相比,GPs的使用将选择工作量减少了3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian Process-Based Feature Selection for Wavelet Parameters: Predicting Acute Hypotensive Episodes from Physiological Signals
Physiological signals such as blood pressure might contain key information to predict a medical condition, but are challenging to mine. Wavelets possess the ability to unveil location-specific features within signals but there exists no principled method to choose the optimal scales and time shifts. We present a scalable, robust system to find the best wavelet parameters using Gaussian processes (GPs). We demonstrate our system by assessing wavelets as predictors for the occurrence of acute hypotensive episodes (AHEs) using over 1 billion blood pressure beats. We obtain an AUROC of 0.79 with wavelet features only, and the false positive rate when the true positive rate is fixed at 0.90 is reduced by 14% when the wavelet feature is used in conjunction with other statistical features. Furthermore, the use of GPs reduces the selection effort by a factor of 3 compared with a naive grid search.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信