{"title":"用SMT求解离散时间MATLAB/Simulink模型的位精确形式化验证","authors":"Paula Herber, Robert Reicherdt, P. Bittner","doi":"10.1109/EMSOFT.2013.6658586","DOIUrl":null,"url":null,"abstract":"Matlab/Simulink is widely used for model-based development of embedded systems. In particular, safety-critical applications are increasingly designed in Matlab/Simulink. At the same time, formal verification techniques for Matlab/Simulink are still rare and existing ones do not scale well. In this paper, we present an automatic transformation from discrete-time Matlab/Simulink to the input language of UCLID. UCLID is a toolkit for system verification based on SMT solving. Our approach enables us to use a combination of bounded model checking and inductive invariant checking for the automatic verification of Matlab/Simulink models. To demonstrate the practical applicability of our approach, we have successfully verified the absence of one of the most common errors, i. e. variable over- or underflow, for an industrial design from the automotive domain.","PeriodicalId":325726,"journal":{"name":"2013 Proceedings of the International Conference on Embedded Software (EMSOFT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Bit-precise formal verification of discrete-time MATLAB/Simulink Models using SMT Solving\",\"authors\":\"Paula Herber, Robert Reicherdt, P. Bittner\",\"doi\":\"10.1109/EMSOFT.2013.6658586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matlab/Simulink is widely used for model-based development of embedded systems. In particular, safety-critical applications are increasingly designed in Matlab/Simulink. At the same time, formal verification techniques for Matlab/Simulink are still rare and existing ones do not scale well. In this paper, we present an automatic transformation from discrete-time Matlab/Simulink to the input language of UCLID. UCLID is a toolkit for system verification based on SMT solving. Our approach enables us to use a combination of bounded model checking and inductive invariant checking for the automatic verification of Matlab/Simulink models. To demonstrate the practical applicability of our approach, we have successfully verified the absence of one of the most common errors, i. e. variable over- or underflow, for an industrial design from the automotive domain.\",\"PeriodicalId\":325726,\"journal\":{\"name\":\"2013 Proceedings of the International Conference on Embedded Software (EMSOFT)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Proceedings of the International Conference on Embedded Software (EMSOFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMSOFT.2013.6658586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Proceedings of the International Conference on Embedded Software (EMSOFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMSOFT.2013.6658586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bit-precise formal verification of discrete-time MATLAB/Simulink Models using SMT Solving
Matlab/Simulink is widely used for model-based development of embedded systems. In particular, safety-critical applications are increasingly designed in Matlab/Simulink. At the same time, formal verification techniques for Matlab/Simulink are still rare and existing ones do not scale well. In this paper, we present an automatic transformation from discrete-time Matlab/Simulink to the input language of UCLID. UCLID is a toolkit for system verification based on SMT solving. Our approach enables us to use a combination of bounded model checking and inductive invariant checking for the automatic verification of Matlab/Simulink models. To demonstrate the practical applicability of our approach, we have successfully verified the absence of one of the most common errors, i. e. variable over- or underflow, for an industrial design from the automotive domain.