Rafał Kopacz, M. Harasimczuk, J. Rąbkowski, Radosław Sobieski
{"title":"交错三电平DC/DC sic基变换器中电感配置和调制技术的实验评估","authors":"Rafał Kopacz, M. Harasimczuk, J. Rąbkowski, Radosław Sobieski","doi":"10.1109/CPE-POWERENG58103.2023.10227393","DOIUrl":null,"url":null,"abstract":"This paper presents an investigation on a non-isolated, three-level DC/DC converter; more specifically, on the possible combinations of inductor configurations and modulation techniques directly affecting the performance of the converter. The many state-of-the-art and conventional solutions are compared theoretically, as well as based on experimental considerations founded on a medium voltage SiC-based DC/DC converter to be applied as an energy storage interfacing system in a fast charging station. The study focuses on the effects of the configurations on the output ripples of the converter, which is crucial for battery-oriented systems. The tests were performed at 1 kV and up to nearly 10 kW of power, successfully validating the use of each configuration. It is shown that for a system to operate in a wide output range, the current ripple criterion is not enough for choosing the optimal configuration, and other factors, e.g., efficiency, must be considered.","PeriodicalId":315989,"journal":{"name":"2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental evaluation of inductor configurations and modulation techniques in an interleaved three-level DC/DC SiC-based converter\",\"authors\":\"Rafał Kopacz, M. Harasimczuk, J. Rąbkowski, Radosław Sobieski\",\"doi\":\"10.1109/CPE-POWERENG58103.2023.10227393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an investigation on a non-isolated, three-level DC/DC converter; more specifically, on the possible combinations of inductor configurations and modulation techniques directly affecting the performance of the converter. The many state-of-the-art and conventional solutions are compared theoretically, as well as based on experimental considerations founded on a medium voltage SiC-based DC/DC converter to be applied as an energy storage interfacing system in a fast charging station. The study focuses on the effects of the configurations on the output ripples of the converter, which is crucial for battery-oriented systems. The tests were performed at 1 kV and up to nearly 10 kW of power, successfully validating the use of each configuration. It is shown that for a system to operate in a wide output range, the current ripple criterion is not enough for choosing the optimal configuration, and other factors, e.g., efficiency, must be considered.\",\"PeriodicalId\":315989,\"journal\":{\"name\":\"2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CPE-POWERENG58103.2023.10227393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPE-POWERENG58103.2023.10227393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental evaluation of inductor configurations and modulation techniques in an interleaved three-level DC/DC SiC-based converter
This paper presents an investigation on a non-isolated, three-level DC/DC converter; more specifically, on the possible combinations of inductor configurations and modulation techniques directly affecting the performance of the converter. The many state-of-the-art and conventional solutions are compared theoretically, as well as based on experimental considerations founded on a medium voltage SiC-based DC/DC converter to be applied as an energy storage interfacing system in a fast charging station. The study focuses on the effects of the configurations on the output ripples of the converter, which is crucial for battery-oriented systems. The tests were performed at 1 kV and up to nearly 10 kW of power, successfully validating the use of each configuration. It is shown that for a system to operate in a wide output range, the current ripple criterion is not enough for choosing the optimal configuration, and other factors, e.g., efficiency, must be considered.