ND Fredholm方程的二维稀疏采样算法及其在核磁共振弛豫测量中的应用

Ariel Hafftka, H. Celik, A. Cloninger, W. Czaja, R. Spencer
{"title":"ND Fredholm方程的二维稀疏采样算法及其在核磁共振弛豫测量中的应用","authors":"Ariel Hafftka, H. Celik, A. Cloninger, W. Czaja, R. Spencer","doi":"10.1109/SAMPTA.2015.7148914","DOIUrl":null,"url":null,"abstract":"In [1], Cloninger, Czaja, Bai, and Basser developed an algorithm for compressive sampling based data acquisition for the solution of 2D Fredholm equations. We extend the algorithm to N dimensional data, by randomly sampling in 2 dimensions and fully sampling in the remaining N-2 dimensions. This new algorithm has direct applications to 3-dimensional nuclear magnetic resonance relaxometry and related experiments, such as T1-D-T2 or T1-T1,ρ-T2. In these experiments, the first two parameters are time-consuming to acquire, so sparse sampling in the first two parameters can provide significant experimental time savings, while compressive sampling is unnecessary in the third parameter.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"2D sparse sampling algorithm for ND Fredholm equations with applications to NMR relaxometry\",\"authors\":\"Ariel Hafftka, H. Celik, A. Cloninger, W. Czaja, R. Spencer\",\"doi\":\"10.1109/SAMPTA.2015.7148914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [1], Cloninger, Czaja, Bai, and Basser developed an algorithm for compressive sampling based data acquisition for the solution of 2D Fredholm equations. We extend the algorithm to N dimensional data, by randomly sampling in 2 dimensions and fully sampling in the remaining N-2 dimensions. This new algorithm has direct applications to 3-dimensional nuclear magnetic resonance relaxometry and related experiments, such as T1-D-T2 or T1-T1,ρ-T2. In these experiments, the first two parameters are time-consuming to acquire, so sparse sampling in the first two parameters can provide significant experimental time savings, while compressive sampling is unnecessary in the third parameter.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在[1]中,Cloninger、Czaja、Bai和Basser开发了一种基于压缩采样的数据采集算法,用于求解二维Fredholm方程。我们将算法扩展到N维数据,在2维中随机采样,在剩下的N-2维中完全采样。该算法可直接应用于三维核磁共振弛豫测量及相关实验,如T1-D-T2或T1-T1,ρ-T2。在这些实验中,前两个参数的获取比较耗时,因此对前两个参数进行稀疏采样可以显著节省实验时间,而对第三个参数则不需要进行压缩采样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2D sparse sampling algorithm for ND Fredholm equations with applications to NMR relaxometry
In [1], Cloninger, Czaja, Bai, and Basser developed an algorithm for compressive sampling based data acquisition for the solution of 2D Fredholm equations. We extend the algorithm to N dimensional data, by randomly sampling in 2 dimensions and fully sampling in the remaining N-2 dimensions. This new algorithm has direct applications to 3-dimensional nuclear magnetic resonance relaxometry and related experiments, such as T1-D-T2 or T1-T1,ρ-T2. In these experiments, the first two parameters are time-consuming to acquire, so sparse sampling in the first two parameters can provide significant experimental time savings, while compressive sampling is unnecessary in the third parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信