使用机器学习技术分析毕业设计大纲

Goksu Tuysuzoglu, Nazanin Moarref, Z. Cataltepe, Ayse Tosun Misirli, Y. Yaslan
{"title":"使用机器学习技术分析毕业设计大纲","authors":"Goksu Tuysuzoglu, Nazanin Moarref, Z. Cataltepe, Ayse Tosun Misirli, Y. Yaslan","doi":"10.1109/ICCSE.2015.7250211","DOIUrl":null,"url":null,"abstract":"When grading a student's performance, determining the assessment factors is a substantial step in course evaluation. The aim of this paper is to improve the quality of the assessment criteria for our Computer Engineering Department's graduation reports. We employ machine learning methods to identify the most important evaluation rubrics that affect the overall grade given to graduation projects. First, we eliminate the redundant factors by computing the correlations between them. Second, we apply K-Means & Hierarchical Clustering methods and third, we analyze the proportion of variance values to find the sufficient amount of eigen values to explain the data. Our results show that Overall Performance is the most important, whereas References is the least important evaluation rubric affecting the graduation project grades. The techniques we use can be used to analyze the graduation rubric grading practices and also to come up with an equivalent rubric with smaller set of questions.","PeriodicalId":311451,"journal":{"name":"2015 10th International Conference on Computer Science & Education (ICCSE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysing graduation project rubrics using machine learning techniques\",\"authors\":\"Goksu Tuysuzoglu, Nazanin Moarref, Z. Cataltepe, Ayse Tosun Misirli, Y. Yaslan\",\"doi\":\"10.1109/ICCSE.2015.7250211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When grading a student's performance, determining the assessment factors is a substantial step in course evaluation. The aim of this paper is to improve the quality of the assessment criteria for our Computer Engineering Department's graduation reports. We employ machine learning methods to identify the most important evaluation rubrics that affect the overall grade given to graduation projects. First, we eliminate the redundant factors by computing the correlations between them. Second, we apply K-Means & Hierarchical Clustering methods and third, we analyze the proportion of variance values to find the sufficient amount of eigen values to explain the data. Our results show that Overall Performance is the most important, whereas References is the least important evaluation rubric affecting the graduation project grades. The techniques we use can be used to analyze the graduation rubric grading practices and also to come up with an equivalent rubric with smaller set of questions.\",\"PeriodicalId\":311451,\"journal\":{\"name\":\"2015 10th International Conference on Computer Science & Education (ICCSE)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Conference on Computer Science & Education (ICCSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSE.2015.7250211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2015.7250211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在对学生成绩进行评分时,确定评估因素是课程评估的重要步骤。本文旨在提高我校计算机工程系毕业报告评审标准的质量。我们使用机器学习方法来识别影响毕业设计总体成绩的最重要的评估标准。首先,我们通过计算冗余因素之间的相关性来消除冗余因素。其次,我们应用K-Means和分层聚类方法;第三,我们分析方差值的比例,以找到足够数量的特征值来解释数据。我们的研究结果表明,综合表现是最重要的,而参考文献是影响毕业设计成绩的最不重要的评价指标。我们使用的技术可以用来分析毕业题目的评分实践,也可以用更小的问题集来提出一个等效的题目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysing graduation project rubrics using machine learning techniques
When grading a student's performance, determining the assessment factors is a substantial step in course evaluation. The aim of this paper is to improve the quality of the assessment criteria for our Computer Engineering Department's graduation reports. We employ machine learning methods to identify the most important evaluation rubrics that affect the overall grade given to graduation projects. First, we eliminate the redundant factors by computing the correlations between them. Second, we apply K-Means & Hierarchical Clustering methods and third, we analyze the proportion of variance values to find the sufficient amount of eigen values to explain the data. Our results show that Overall Performance is the most important, whereas References is the least important evaluation rubric affecting the graduation project grades. The techniques we use can be used to analyze the graduation rubric grading practices and also to come up with an equivalent rubric with smaller set of questions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信