基于方差分析分解的稀疏混合模型

J. Hertrich, F. Ba, G. Steidl
{"title":"基于方差分析分解的稀疏混合模型","authors":"J. Hertrich, F. Ba, G. Steidl","doi":"10.1553/etna_vol55s142","DOIUrl":null,"url":null,"abstract":"Inspired by the analysis of variance (ANOVA) decomposition of functions, we propose a Gaussianuniform mixture model on the high-dimensional torus which relies on the assumption that the function that we wish to approximate can be well explained by limited variable interactions. We consider three model approaches, namely wrapped Gaussians, diagonal wrapped Gaussians, and products of von Mises distributions. The sparsity of the mixture model is ensured by the fact that its summands are products of Gaussian-like density functions acting on low-dimensional spaces and uniform probability densities defined on the remaining directions. To learn such a sparse mixture model from given samples, we propose an objective function consisting of the negative log-likelihood function of the mixture model and a regularizer that penalizes the number of its summands. For minimizing this functional we combine the Expectation Maximization algorithm with a proximal step that takes the regularizer into account. To decide which summands of the mixture model are important, we apply a Kolmogorov-Smirnov test. Numerical examples demonstrate the performance of our approach.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sparse mixture models inspired by ANOVA decompositions\",\"authors\":\"J. Hertrich, F. Ba, G. Steidl\",\"doi\":\"10.1553/etna_vol55s142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by the analysis of variance (ANOVA) decomposition of functions, we propose a Gaussianuniform mixture model on the high-dimensional torus which relies on the assumption that the function that we wish to approximate can be well explained by limited variable interactions. We consider three model approaches, namely wrapped Gaussians, diagonal wrapped Gaussians, and products of von Mises distributions. The sparsity of the mixture model is ensured by the fact that its summands are products of Gaussian-like density functions acting on low-dimensional spaces and uniform probability densities defined on the remaining directions. To learn such a sparse mixture model from given samples, we propose an objective function consisting of the negative log-likelihood function of the mixture model and a regularizer that penalizes the number of its summands. For minimizing this functional we combine the Expectation Maximization algorithm with a proximal step that takes the regularizer into account. To decide which summands of the mixture model are important, we apply a Kolmogorov-Smirnov test. Numerical examples demonstrate the performance of our approach.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol55s142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol55s142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

受函数方差分析(ANOVA)分解的启发,我们提出了高维环面上的高斯均匀混合模型,该模型依赖于我们希望近似的函数可以通过有限变量相互作用很好地解释的假设。我们考虑了三种模型方法,即包裹高斯分布、对角包裹高斯分布和von Mises分布的乘积。混合模型的稀疏性是由它的和是作用于低维空间的类高斯密度函数和定义在其余方向上的均匀概率密度的乘积保证的。为了从给定的样本中学习这种稀疏混合模型,我们提出了一个目标函数,该目标函数由混合模型的负对数似然函数和惩罚求和次数的正则器组成。为了最小化这个函数,我们将期望最大化算法与考虑正则化器的近端步骤结合起来。为了确定混合模型的哪些求和是重要的,我们应用了Kolmogorov-Smirnov检验。数值算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse mixture models inspired by ANOVA decompositions
Inspired by the analysis of variance (ANOVA) decomposition of functions, we propose a Gaussianuniform mixture model on the high-dimensional torus which relies on the assumption that the function that we wish to approximate can be well explained by limited variable interactions. We consider three model approaches, namely wrapped Gaussians, diagonal wrapped Gaussians, and products of von Mises distributions. The sparsity of the mixture model is ensured by the fact that its summands are products of Gaussian-like density functions acting on low-dimensional spaces and uniform probability densities defined on the remaining directions. To learn such a sparse mixture model from given samples, we propose an objective function consisting of the negative log-likelihood function of the mixture model and a regularizer that penalizes the number of its summands. For minimizing this functional we combine the Expectation Maximization algorithm with a proximal step that takes the regularizer into account. To decide which summands of the mixture model are important, we apply a Kolmogorov-Smirnov test. Numerical examples demonstrate the performance of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信