连续伴随法应用于不可压缩Navier-Stokes方程的稳定有限元公式

B. Janssens, Pierre Vandenschrick, K. Stevens, G. Alessi
{"title":"连续伴随法应用于不可压缩Navier-Stokes方程的稳定有限元公式","authors":"B. Janssens, Pierre Vandenschrick, K. Stevens, G. Alessi","doi":"10.29008/ETC2019-242","DOIUrl":null,"url":null,"abstract":"The finite element solution of the continuous adjoint to the Navier-Stokes equations requires stabilization similar to that required for the flow problem. This paper presents the stabilized adjoint equations and their boundary conditions, with the weak forms for the equations and boundary conditions. In addition to this, the weak form of the direct differentiation method is also presented. Finally, a test case using an S-shaped duct shows the agreement between the direct differentiation method and the adjoint method. Sensitivities and values of the adjoint solutions are given as validation data.","PeriodicalId":268187,"journal":{"name":"13th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The continuous adjoint approach applied to the stabilized finite-element formulation of the incompressible Navier-Stokes equations\",\"authors\":\"B. Janssens, Pierre Vandenschrick, K. Stevens, G. Alessi\",\"doi\":\"10.29008/ETC2019-242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The finite element solution of the continuous adjoint to the Navier-Stokes equations requires stabilization similar to that required for the flow problem. This paper presents the stabilized adjoint equations and their boundary conditions, with the weak forms for the equations and boundary conditions. In addition to this, the weak form of the direct differentiation method is also presented. Finally, a test case using an S-shaped duct shows the agreement between the direct differentiation method and the adjoint method. Sensitivities and values of the adjoint solutions are given as validation data.\",\"PeriodicalId\":268187,\"journal\":{\"name\":\"13th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"13th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29008/ETC2019-242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29008/ETC2019-242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Navier-Stokes方程的连续伴随方程的有限元解需要与流动问题类似的稳定性。本文给出了一类稳定伴随方程及其边界条件,并给出了这些方程和边界条件的弱形式。此外,还给出了直接微分法的弱形式。最后,用s形风管进行了测试,验证了直接微分法与伴随法的一致性。给出了伴随解的灵敏度和值作为验证数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The continuous adjoint approach applied to the stabilized finite-element formulation of the incompressible Navier-Stokes equations
The finite element solution of the continuous adjoint to the Navier-Stokes equations requires stabilization similar to that required for the flow problem. This paper presents the stabilized adjoint equations and their boundary conditions, with the weak forms for the equations and boundary conditions. In addition to this, the weak form of the direct differentiation method is also presented. Finally, a test case using an S-shaped duct shows the agreement between the direct differentiation method and the adjoint method. Sensitivities and values of the adjoint solutions are given as validation data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信