物理层网络编码中基于CNN的自动调制分类和信噪比估计

Xuesong Wang, Y. He, Yang Sun, Yueying Zhan
{"title":"物理层网络编码中基于CNN的自动调制分类和信噪比估计","authors":"Xuesong Wang, Y. He, Yang Sun, Yueying Zhan","doi":"10.1109/WOCC48579.2020.9114949","DOIUrl":null,"url":null,"abstract":"In this paper, we first propose the Automatic Modulation Classification (AMC) problem based on the Physical layer Network Coding (PNC) system and elaborate in detail. We use Convolutional Neural Networks (CNN) to identify nine cases including three modulation formats with three phase shifts respectively, and estimate the Signal-to-Noise Ratio (SNR) simultaneously. As the result, we correctly identify several modulation formats and typical phase offsets with a 100% recognition rate, and estimate the received signal-to-noise ratio effectively with recognition rate above 98%.","PeriodicalId":187607,"journal":{"name":"2020 29th Wireless and Optical Communications Conference (WOCC)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Modulation Classification and SNR Estimation Based on CNN in Physical-layer Network Coding\",\"authors\":\"Xuesong Wang, Y. He, Yang Sun, Yueying Zhan\",\"doi\":\"10.1109/WOCC48579.2020.9114949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first propose the Automatic Modulation Classification (AMC) problem based on the Physical layer Network Coding (PNC) system and elaborate in detail. We use Convolutional Neural Networks (CNN) to identify nine cases including three modulation formats with three phase shifts respectively, and estimate the Signal-to-Noise Ratio (SNR) simultaneously. As the result, we correctly identify several modulation formats and typical phase offsets with a 100% recognition rate, and estimate the received signal-to-noise ratio effectively with recognition rate above 98%.\",\"PeriodicalId\":187607,\"journal\":{\"name\":\"2020 29th Wireless and Optical Communications Conference (WOCC)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 29th Wireless and Optical Communications Conference (WOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC48579.2020.9114949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 29th Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC48579.2020.9114949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文首先提出了基于物理层网络编码(PNC)系统的自动调制分类(AMC)问题,并进行了详细阐述。利用卷积神经网络(CNN)分别识别了三种相移调制格式的九种情况,并同时估计了信噪比(SNR)。结果表明,我们能够以100%的识别率正确识别几种调制格式和典型的相位偏移,并以98%以上的识别率有效估计接收到的信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Modulation Classification and SNR Estimation Based on CNN in Physical-layer Network Coding
In this paper, we first propose the Automatic Modulation Classification (AMC) problem based on the Physical layer Network Coding (PNC) system and elaborate in detail. We use Convolutional Neural Networks (CNN) to identify nine cases including three modulation formats with three phase shifts respectively, and estimate the Signal-to-Noise Ratio (SNR) simultaneously. As the result, we correctly identify several modulation formats and typical phase offsets with a 100% recognition rate, and estimate the received signal-to-noise ratio effectively with recognition rate above 98%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信