异构计算体系结构中融合内存层次结构的权衡

Kyle Spafford, J. Meredith, Seyong Lee, Dong Li, P. Roth, J. Vetter
{"title":"异构计算体系结构中融合内存层次结构的权衡","authors":"Kyle Spafford, J. Meredith, Seyong Lee, Dong Li, P. Roth, J. Vetter","doi":"10.1145/2212908.2212924","DOIUrl":null,"url":null,"abstract":"With the rise of general purpose computing on graphics processing units (GPGPU), the influence from consumer markets can now be seen across the spectrum of computer architectures. In fact, many of the high-ranking Top500 HPC systems now include these accelerators. Traditionally, GPUs have connected to the CPU via the PCIe bus, which has proved to be a significant bottleneck for scalable scientific applications. Now, a trend toward tighter integration between CPU and GPU has removed this bottleneck and unified the memory hierarchy for both CPU and GPU cores. We examine the impact of this trend for high performance scientific computing by investigating AMD's new Fusion Accelerated Processing Unit (APU) as a testbed. In particular, we evaluate the tradeoffs in performance, power consumption, and programmability when comparing this unified memory hierarchy with similar, but discrete GPUs.","PeriodicalId":430420,"journal":{"name":"ACM International Conference on Computing Frontiers","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"The tradeoffs of fused memory hierarchies in heterogeneous computing architectures\",\"authors\":\"Kyle Spafford, J. Meredith, Seyong Lee, Dong Li, P. Roth, J. Vetter\",\"doi\":\"10.1145/2212908.2212924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rise of general purpose computing on graphics processing units (GPGPU), the influence from consumer markets can now be seen across the spectrum of computer architectures. In fact, many of the high-ranking Top500 HPC systems now include these accelerators. Traditionally, GPUs have connected to the CPU via the PCIe bus, which has proved to be a significant bottleneck for scalable scientific applications. Now, a trend toward tighter integration between CPU and GPU has removed this bottleneck and unified the memory hierarchy for both CPU and GPU cores. We examine the impact of this trend for high performance scientific computing by investigating AMD's new Fusion Accelerated Processing Unit (APU) as a testbed. In particular, we evaluate the tradeoffs in performance, power consumption, and programmability when comparing this unified memory hierarchy with similar, but discrete GPUs.\",\"PeriodicalId\":430420,\"journal\":{\"name\":\"ACM International Conference on Computing Frontiers\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2212908.2212924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2212908.2212924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

随着通用计算在图形处理单元(GPGPU)上的兴起,消费市场的影响现在可以在整个计算机体系结构中看到。事实上,许多排名前500的高性能计算系统现在都包括这些加速器。传统上,gpu通过PCIe总线连接到CPU,这已被证明是可扩展科学应用的一个重要瓶颈。现在,CPU和GPU之间更紧密集成的趋势已经消除了这个瓶颈,并统一了CPU和GPU内核的内存层次结构。我们通过研究AMD的新型融合加速处理单元(APU)作为测试平台来研究这一趋势对高性能科学计算的影响。特别地,我们在比较这种统一内存层次结构与类似但离散的gpu时,评估了性能,功耗和可编程性方面的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The tradeoffs of fused memory hierarchies in heterogeneous computing architectures
With the rise of general purpose computing on graphics processing units (GPGPU), the influence from consumer markets can now be seen across the spectrum of computer architectures. In fact, many of the high-ranking Top500 HPC systems now include these accelerators. Traditionally, GPUs have connected to the CPU via the PCIe bus, which has proved to be a significant bottleneck for scalable scientific applications. Now, a trend toward tighter integration between CPU and GPU has removed this bottleneck and unified the memory hierarchy for both CPU and GPU cores. We examine the impact of this trend for high performance scientific computing by investigating AMD's new Fusion Accelerated Processing Unit (APU) as a testbed. In particular, we evaluate the tradeoffs in performance, power consumption, and programmability when comparing this unified memory hierarchy with similar, but discrete GPUs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信