使用主成分分析校准城市发展模型的元胞自动机

Yongjiu Feng, X. Tong, Miao-long Liu, Z. Han
{"title":"使用主成分分析校准城市发展模型的元胞自动机","authors":"Yongjiu Feng, X. Tong, Miao-long Liu, Z. Han","doi":"10.1109/URS.2009.5137467","DOIUrl":null,"url":null,"abstract":"Principal component analysis (PCA) is a powerful technique for extracting structure from high-dimensional datasets. In this paper, a PCA based cellular automata (CA) model for modelling urban development is presented. Compared to the conventional method of retrieving CA transition rules, the PCA model needs a small number of principal components to account for most of the structure in the datasets due to the noise reduction. The PCA-CA model is successfully applied in a fast growing area of Shanghai, eastern China. The results produced by the PCA-CA model shows that it matches well with the actual development of the case study area with relatively high accuracy.","PeriodicalId":154334,"journal":{"name":"2009 Joint Urban Remote Sensing Event","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Calibrating cellular automata for urban development modelling using principal component analysis\",\"authors\":\"Yongjiu Feng, X. Tong, Miao-long Liu, Z. Han\",\"doi\":\"10.1109/URS.2009.5137467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Principal component analysis (PCA) is a powerful technique for extracting structure from high-dimensional datasets. In this paper, a PCA based cellular automata (CA) model for modelling urban development is presented. Compared to the conventional method of retrieving CA transition rules, the PCA model needs a small number of principal components to account for most of the structure in the datasets due to the noise reduction. The PCA-CA model is successfully applied in a fast growing area of Shanghai, eastern China. The results produced by the PCA-CA model shows that it matches well with the actual development of the case study area with relatively high accuracy.\",\"PeriodicalId\":154334,\"journal\":{\"name\":\"2009 Joint Urban Remote Sensing Event\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Joint Urban Remote Sensing Event\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URS.2009.5137467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Joint Urban Remote Sensing Event","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URS.2009.5137467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

主成分分析(PCA)是一种从高维数据集中提取结构的有效方法。本文提出了一种基于PCA的元胞自动机(CA)城市发展模型。与传统的CA转换规则检索方法相比,PCA模型由于噪声的降低,只需要少量的主成分就可以解释数据集中的大部分结构。PCA-CA模型成功地应用于中国东部快速增长的上海地区。结果表明,PCA-CA模型与案例研究区的实际发展情况吻合较好,具有较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibrating cellular automata for urban development modelling using principal component analysis
Principal component analysis (PCA) is a powerful technique for extracting structure from high-dimensional datasets. In this paper, a PCA based cellular automata (CA) model for modelling urban development is presented. Compared to the conventional method of retrieving CA transition rules, the PCA model needs a small number of principal components to account for most of the structure in the datasets due to the noise reduction. The PCA-CA model is successfully applied in a fast growing area of Shanghai, eastern China. The results produced by the PCA-CA model shows that it matches well with the actual development of the case study area with relatively high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信