高精度整数乘法与图形处理单元

Niall Emmart, C. Weems
{"title":"高精度整数乘法与图形处理单元","authors":"Niall Emmart, C. Weems","doi":"10.1109/IPDPSW.2010.5470814","DOIUrl":null,"url":null,"abstract":"In this paper we evaluate the potential for using an NVIDIA graphics processing unit (GPU) to accelerate high precision integer multiplication. The reported peak vector performance for a typical GPU appears to offer considerable potential for accelerating such a regular computation. Because of limitations in the on-chip memory, the high cost of kernel launches, and the particular nature of the architecture's support for parallelism, we found it necessary to use a hybrid algorithmic approach to obtain good performance. On the GPU itself we use an adaptation of the Strassen FFT algorithm to multiply 32KB chunks, while on the CPU we adapt the Karatsuba divide-and-conquer approach to optimize the application of the GPU's partial multiplies, which are viewed as “digits” by our implementation of Karatsuba. Even with this approach, the result is at best a modest increase in performance, compared with executing the same multiplication using the GMP package on a CPU at a comparable technology node. We identify the sources of this lackluster performance and discuss the likely impact of planned advances in GPU architecture.","PeriodicalId":329280,"journal":{"name":"2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High precision integer multiplication with a graphics processing unit\",\"authors\":\"Niall Emmart, C. Weems\",\"doi\":\"10.1109/IPDPSW.2010.5470814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we evaluate the potential for using an NVIDIA graphics processing unit (GPU) to accelerate high precision integer multiplication. The reported peak vector performance for a typical GPU appears to offer considerable potential for accelerating such a regular computation. Because of limitations in the on-chip memory, the high cost of kernel launches, and the particular nature of the architecture's support for parallelism, we found it necessary to use a hybrid algorithmic approach to obtain good performance. On the GPU itself we use an adaptation of the Strassen FFT algorithm to multiply 32KB chunks, while on the CPU we adapt the Karatsuba divide-and-conquer approach to optimize the application of the GPU's partial multiplies, which are viewed as “digits” by our implementation of Karatsuba. Even with this approach, the result is at best a modest increase in performance, compared with executing the same multiplication using the GMP package on a CPU at a comparable technology node. We identify the sources of this lackluster performance and discuss the likely impact of planned advances in GPU architecture.\",\"PeriodicalId\":329280,\"journal\":{\"name\":\"2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2010.5470814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2010.5470814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们评估了使用NVIDIA图形处理单元(GPU)加速高精度整数乘法的潜力。据报道,典型GPU的峰值矢量性能似乎为加速这种常规计算提供了相当大的潜力。由于片上内存的限制、内核启动的高成本以及体系结构对并行性支持的特殊性质,我们发现有必要使用混合算法方法来获得良好的性能。在GPU本身,我们使用Strassen FFT算法来乘32KB的块,而在CPU上,我们采用Karatsuba分治方法来优化GPU的部分乘法的应用,这些部分乘法被我们的Karatsuba实现视为“数字”。即使使用这种方法,与在类似技术节点的CPU上使用GMP包执行相同的乘法相比,结果充其量也只是性能上的适度提高。我们确定了这种低迷性能的来源,并讨论了GPU架构计划进展的可能影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High precision integer multiplication with a graphics processing unit
In this paper we evaluate the potential for using an NVIDIA graphics processing unit (GPU) to accelerate high precision integer multiplication. The reported peak vector performance for a typical GPU appears to offer considerable potential for accelerating such a regular computation. Because of limitations in the on-chip memory, the high cost of kernel launches, and the particular nature of the architecture's support for parallelism, we found it necessary to use a hybrid algorithmic approach to obtain good performance. On the GPU itself we use an adaptation of the Strassen FFT algorithm to multiply 32KB chunks, while on the CPU we adapt the Karatsuba divide-and-conquer approach to optimize the application of the GPU's partial multiplies, which are viewed as “digits” by our implementation of Karatsuba. Even with this approach, the result is at best a modest increase in performance, compared with executing the same multiplication using the GMP package on a CPU at a comparable technology node. We identify the sources of this lackluster performance and discuss the likely impact of planned advances in GPU architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信